期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于振动信号的低压万能式断路器分合闸故障程度评估方法的研究 被引量:31
1
作者 孙曙光 张强 +2 位作者 杜太行 王景芹 王岩 《中国电机工程学报》 EI CSCD 北大核心 2017年第18期5473-5482,共10页
目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local me... 目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local mean decomposition,LMD)将采集到的分合闸振动信号自适应分解,求取主要乘积函数(product function,PF)的改进多尺度排列熵(multi-scale permutation entropy,MMPE)构成特征向量,再经过降维后,作为改进支持向量机(support vector machine,SVM)的输入量,实现断路器工作模式的识别;当断路器处于故障模式时,对采集的振动信号求取多尺度排列熵偏均值(partial mean of multi-scale permutation entropy,PMMPE),作为故障程度定量评估指标,并参照所求得的不同故障模式的故障程度特性曲线,可实现分合闸故障程度的定量评估。经实测数据验证表明,所提方法可以完成断路器工作模式的有效识别,且PMMPE指标相较于峭度、能量和多尺度排列熵平均值指标,能够更加有效的完成低压万能式断路器分合闸故障程度的定量评估。 展开更多
关键词 低压万能式断路器 局部均值分解(LMD) 改进多尺度排列(MMPE) 支持向量机(SVM) 多尺度排列熵偏 均值(PMMPE)故障程度评估
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部