随着通信技术的发展,频谱感知技术已经成为解决频谱资源稀缺的重要解决手段之一。针对传统的频谱感知方法在低信噪比(Signal to Noise Ratio,SNR)下准确率较低的问题,提出一种基于残差神经网络和注意力机制相结合的正交频分复用(Orthogo...随着通信技术的发展,频谱感知技术已经成为解决频谱资源稀缺的重要解决手段之一。针对传统的频谱感知方法在低信噪比(Signal to Noise Ratio,SNR)下准确率较低的问题,提出一种基于残差神经网络和注意力机制相结合的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)频谱感知方法。将频谱感知问题转化为图像二分类任务。通过分析OFDM信号的循环自相关特征,将其灰度处理以生成循环自相关灰度图像。利用改进后的残差神经网络进行训练,提取这些灰度图像的深层特征,使用测试数据验证所得到的频谱感知模型。仿真实验结果表明,在低SNR条件下,所提方法表现出更出色的频谱感知性能,优于传统频谱感知技术。展开更多
为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络...为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络。将脑电信号采集电极位置映射到二维矩阵中,采集信号作为通道,构成三维数据;将得到的三维数据输入到时空Inception残差注意力卷积网络之中,提取时空信息;将得到的特征输入到全连接层进行分类;将Inception结构引入脑电情绪识别领域,实现多尺度特征提取,并将电极映射到矩阵之中,保留电极位置信息,使用时空Inception残差注意力网络从时空两个维度获取脑电相关信息。实验表明,使用该模型对DEAP数据集进行情绪四分类可得到93.71%的准确度,相较于对比模型,识别精度提高了10%~20%。提出的模型在脑电信号情绪识别领域具有优良性能。展开更多
文摘随着通信技术的发展,频谱感知技术已经成为解决频谱资源稀缺的重要解决手段之一。针对传统的频谱感知方法在低信噪比(Signal to Noise Ratio,SNR)下准确率较低的问题,提出一种基于残差神经网络和注意力机制相结合的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)频谱感知方法。将频谱感知问题转化为图像二分类任务。通过分析OFDM信号的循环自相关特征,将其灰度处理以生成循环自相关灰度图像。利用改进后的残差神经网络进行训练,提取这些灰度图像的深层特征,使用测试数据验证所得到的频谱感知模型。仿真实验结果表明,在低SNR条件下,所提方法表现出更出色的频谱感知性能,优于传统频谱感知技术。
文摘为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络。将脑电信号采集电极位置映射到二维矩阵中,采集信号作为通道,构成三维数据;将得到的三维数据输入到时空Inception残差注意力卷积网络之中,提取时空信息;将得到的特征输入到全连接层进行分类;将Inception结构引入脑电情绪识别领域,实现多尺度特征提取,并将电极映射到矩阵之中,保留电极位置信息,使用时空Inception残差注意力网络从时空两个维度获取脑电相关信息。实验表明,使用该模型对DEAP数据集进行情绪四分类可得到93.71%的准确度,相较于对比模型,识别精度提高了10%~20%。提出的模型在脑电信号情绪识别领域具有优良性能。