期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双分支多尺度残差融合嵌套的SAR和多光谱图像融合架构与实验 被引量:4
1
作者 董张玉 许道礼 +5 位作者 张晋 安森 于金秋 李金徽 彭鹏 汪燕 《地理与地理信息科学》 CSCD 北大核心 2023年第1期23-30,共8页
基于深度学习融合合成孔径雷达(SAR)和多光谱(MS)图像的方法主要通过增加卷积层数量描述网络模型尺度,但未能提高算法对不同尺度空间细节特征的提取能力。该文设计双分支的多尺度残差融合嵌套连接网络架构(Double-branch Multiscale Res... 基于深度学习融合合成孔径雷达(SAR)和多光谱(MS)图像的方法主要通过增加卷积层数量描述网络模型尺度,但未能提高算法对不同尺度空间细节特征的提取能力。该文设计双分支的多尺度残差融合嵌套连接网络架构(Double-branch Multiscale Residual-fusion Nested-connections Net,DMRN-Net),将融合任务划分为细节提升和光谱保持两部分:在细节提升分路中,将SAR和MS图像中的高频信息分别经过多深度特征提取层、多尺度残差融合网络层及嵌套连接解码器得到重建图像;在光谱保持分路中,通过融合上采样后的MS图像和细节提升分路结果,将光谱信息注入融合图像中,从而得出融合结果。通过DMRN-Net和传统算法以及普通双分支网络的对比实验表明,DMRN-Net在主观判断和客观评价上均取得较好的融合结果,能在保持光谱信息的基础上,进一步增加图像的空间细节信息,验证了DMRN-Net在图像融合领域的重要价值。 展开更多
关键词 合成孔径雷达图像 多光谱图像 双分支 多尺度残差融合网络 嵌套连接
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部