期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种改进的激光点云滤波算法
被引量:
18
1
作者
韩浩宇
张元
韩燮
《激光与光电子学进展》
CSCD
北大核心
2021年第20期85-91,共7页
针对常规的点云滤波方法在去除接近模型噪声的过程中会对模型造成较大破坏的问题,提出一种结合双张量投票和多尺度法向量估计的点云滤波算法。首先采用主成分分析法在较大的尺度下估计各点的法向量,对各点进行双张量投票以提取特征点。...
针对常规的点云滤波方法在去除接近模型噪声的过程中会对模型造成较大破坏的问题,提出一种结合双张量投票和多尺度法向量估计的点云滤波算法。首先采用主成分分析法在较大的尺度下估计各点的法向量,对各点进行双张量投票以提取特征点。然后对提取出的特征点在较小的尺度下估计法向量,并结合随机采样一致性方法对小范围噪声平面进行剔除。最后采用曲率对剩余的噪声进行滤波,获得最终的点云数据。实验结果表明,所提算法可以有效剔除噪声点,并较好地保留三维模型的尖锐特征,为后续点云配准和三维重建奠定基础。
展开更多
关键词
图像处理
点云滤波
张量投票
随机采样一致性
多尺度法向量估计
曲率
原文传递
题名
一种改进的激光点云滤波算法
被引量:
18
1
作者
韩浩宇
张元
韩燮
机构
中北大学大数据学院
出处
《激光与光电子学进展》
CSCD
北大核心
2021年第20期85-91,共7页
基金
国家重点研发计划(2018YFB2101504)
山西省重点研发计划(201803D121081,201903D121147)
山西省自然科学基金(201901D111150)。
文摘
针对常规的点云滤波方法在去除接近模型噪声的过程中会对模型造成较大破坏的问题,提出一种结合双张量投票和多尺度法向量估计的点云滤波算法。首先采用主成分分析法在较大的尺度下估计各点的法向量,对各点进行双张量投票以提取特征点。然后对提取出的特征点在较小的尺度下估计法向量,并结合随机采样一致性方法对小范围噪声平面进行剔除。最后采用曲率对剩余的噪声进行滤波,获得最终的点云数据。实验结果表明,所提算法可以有效剔除噪声点,并较好地保留三维模型的尖锐特征,为后续点云配准和三维重建奠定基础。
关键词
图像处理
点云滤波
张量投票
随机采样一致性
多尺度法向量估计
曲率
Keywords
image processing
point cloud filtering
tensor voting
random sample consensus
multiscale normal vector estimation
curvature
分类号
TP391.9 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
一种改进的激光点云滤波算法
韩浩宇
张元
韩燮
《激光与光电子学进展》
CSCD
北大核心
2021
18
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部