期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
MCA-Net:多尺度综合注意力CNN在医学图像分割中的应用
被引量:
4
1
作者
丁才富
杨晨
+2 位作者
纪秋浪
王阳
张兵
《微电子学与计算机》
2022年第3期71-77,共7页
医学图像自动分割技术具有辅助临床医学诊断的功能.为改善CNN模型在医学图像分割中存在感受野小及细节特征不敏感等问题,基于多尺度策略以及注意力机制,提出一种多尺度综合注意力的U形网络架构,以提升医学图像分割质量.首先,提出一个新...
医学图像自动分割技术具有辅助临床医学诊断的功能.为改善CNN模型在医学图像分割中存在感受野小及细节特征不敏感等问题,基于多尺度策略以及注意力机制,提出一种多尺度综合注意力的U形网络架构,以提升医学图像分割质量.首先,提出一个新的双路径因式分解多尺度融合块,以扩展图像特征的感受野,进一步提取图像特征的细节信息.其次,在架构中融入通道和空间融合自注意力块,利用注意力机制的特性,抑制不相关的部分或背景以突显深层特征的空间信息.最后,引入多尺度注意力块.该模块通过融合多个尺度的特征信息,以突出不同尺度中最显著的特征图来适应当前分割对象的大小.为验证模型的可靠性,将所提出的网络模型应用于肺部、细胞轮廓及肝脏等医学图像分割任务.实验结果表明,所提方法在准确率、Dice系数、AUC及灵敏度等评估指标上均优于目前用于医学图像分割的主流方法.
展开更多
关键词
医学图像分割
因式分解
双路径融合
块
通道
注意力
空间
注意力
多尺度注意力块
下载PDF
职称材料
矿井图像超分辨率重建研究
2
作者
王媛彬
刘佳
+1 位作者
郭亚茹
吴冰超
《工矿自动化》
CSCD
北大核心
2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。...
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。
展开更多
关键词
矿井图像
超分辨率重建
超分辨率生成对抗网络
多尺度
密集通道
注意力
残差
块
高效通道
注意力
模
块
深度可分离卷积
纹理损失
下载PDF
职称材料
题名
MCA-Net:多尺度综合注意力CNN在医学图像分割中的应用
被引量:
4
1
作者
丁才富
杨晨
纪秋浪
王阳
张兵
机构
贵州大学大数据与信息工程学院
出处
《微电子学与计算机》
2022年第3期71-77,共7页
基金
国家自然基金(62065003)
半导体功率器件可靠性教育部工程研究中心开放基金(黔科合平台人才20176103)。
文摘
医学图像自动分割技术具有辅助临床医学诊断的功能.为改善CNN模型在医学图像分割中存在感受野小及细节特征不敏感等问题,基于多尺度策略以及注意力机制,提出一种多尺度综合注意力的U形网络架构,以提升医学图像分割质量.首先,提出一个新的双路径因式分解多尺度融合块,以扩展图像特征的感受野,进一步提取图像特征的细节信息.其次,在架构中融入通道和空间融合自注意力块,利用注意力机制的特性,抑制不相关的部分或背景以突显深层特征的空间信息.最后,引入多尺度注意力块.该模块通过融合多个尺度的特征信息,以突出不同尺度中最显著的特征图来适应当前分割对象的大小.为验证模型的可靠性,将所提出的网络模型应用于肺部、细胞轮廓及肝脏等医学图像分割任务.实验结果表明,所提方法在准确率、Dice系数、AUC及灵敏度等评估指标上均优于目前用于医学图像分割的主流方法.
关键词
医学图像分割
因式分解
双路径融合
块
通道
注意力
空间
注意力
多尺度注意力块
Keywords
medical image segmentation
factorization
dual-path fusion block
channel attention
spatial attention
multi-scale attention block
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
矿井图像超分辨率重建研究
2
作者
王媛彬
刘佳
郭亚茹
吴冰超
机构
西安科技大学电气与控制工程学院
西安市电气设备状态监测与供电安全重点实验室
出处
《工矿自动化》
CSCD
北大核心
2023年第11期76-83,120,共9页
基金
国家自然科学基金资助项目(52174198)
陕西省重点研发计划项目(2023YBSF-133)。
文摘
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。
关键词
矿井图像
超分辨率重建
超分辨率生成对抗网络
多尺度
密集通道
注意力
残差
块
高效通道
注意力
模
块
深度可分离卷积
纹理损失
Keywords
mine image
super resolution reconstruction
super-resolution generative adversarial network
multi scale dense channel attention residual blocks
efficient channel attention module
depthwise separable convolution
texture loss
分类号
TD67 [矿业工程—矿山机电]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
MCA-Net:多尺度综合注意力CNN在医学图像分割中的应用
丁才富
杨晨
纪秋浪
王阳
张兵
《微电子学与计算机》
2022
4
下载PDF
职称材料
2
矿井图像超分辨率重建研究
王媛彬
刘佳
郭亚茹
吴冰超
《工矿自动化》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部