Simulating semi-solid metal forming requires modelling semi-solid behaviour.However, such modelling is difficult because semi-solid behavior is thixotropic and depends on the liquid-solid spatial distribution within t...Simulating semi-solid metal forming requires modelling semi-solid behaviour.However, such modelling is difficult because semi-solid behavior is thixotropic and depends on the liquid-solid spatial distribution within the material.In order to better understand and model relationships between microstructure and behavior, a model based on micromechanical approaches and homogenisation techniques is presented.This model is an extension of a previous model established in a pure viscoplastic framework to account for elasticity.Indeed, experimental load-displacement signals reveal the presence of an elastic-type response in the earlier stages of deformation when semi-solids are loaded under rapid compression.This elastic feature of the behaviour is attributed to the response of the porous solid skeleton saturated by incompressible liquid.A good quantitative agreement is found between the elastic-viscoplastic predicted response and the experimental data.More precisely, the strong initial rising part of the load-displacement curve, the peak load and the subsequent fall in load are well captured.The effect of solid fraction on mechanical response is in qualitative agreement with experiments.展开更多
There are complex heterogeneous entities in the underground medium,and the heterogeneous scale has a substantial impact on wave propagation.In this study,we used a set of 11 samples of glass beads as high-velocity het...There are complex heterogeneous entities in the underground medium,and the heterogeneous scale has a substantial impact on wave propagation.In this study,we used a set of 11 samples of glass beads as high-velocity heterogeneous bodies to evaluate the impact of such heterogeneous bodies on the propagation of P-wave.We vary the heterogeneous scale by changing the diameter of the glass beads from 0.18 to 11 mm while keeping the same volume proportion(10%)of the beads for the set of 11 samples.The pulse transmission method was used to record measurements at the ultrasonic frequencies of 0.34,0.61,and 0.84 MHz in the homogeneous matrix.The relationship between P-wave fi eld features and heterogeneity scale,P-wave velocity,and the multiple of the wave number and heterogeneous scale(ka)was observed in the laboratory,which has sparked widespread interest and research.Heterogeneous scale affects P-wave propagation,and its wave field changes are complex.The waveform,amplitude,and velocity of the recorded P-waves correlate with the heterogeneous scale.For the forward scattering while large-scale heterogeneities,noticeable direct and diff racted waves are observed in the laboratory,which indicates that the infl uence of direct and diff racted waves cannot be ignored for large-scale heterogeneities.The relationship between velocity and ka shows frequency dependence;the reason is that the magnitude of change in velocity caused by wave number is diff erent from that caused by heterogeneous scale.According to the change in the recorded waveform,amplitude variation,or the relationship between the velocity measured at diff erent frequencies and the heterogeneous scale,the identifi ed turning points of the ray approximation are all around ka=10.When ka is less than 1,the velocity changes slowly and gradually approaches the eff ective medium velocity.The ray velocity measured for heterogeneous media with large velocity perturbations in the laboratory is signifi cantly smaller than the velocity predicted by the perturbation theory.展开更多
文摘Simulating semi-solid metal forming requires modelling semi-solid behaviour.However, such modelling is difficult because semi-solid behavior is thixotropic and depends on the liquid-solid spatial distribution within the material.In order to better understand and model relationships between microstructure and behavior, a model based on micromechanical approaches and homogenisation techniques is presented.This model is an extension of a previous model established in a pure viscoplastic framework to account for elasticity.Indeed, experimental load-displacement signals reveal the presence of an elastic-type response in the earlier stages of deformation when semi-solids are loaded under rapid compression.This elastic feature of the behaviour is attributed to the response of the porous solid skeleton saturated by incompressible liquid.A good quantitative agreement is found between the elastic-viscoplastic predicted response and the experimental data.More precisely, the strong initial rising part of the load-displacement curve, the peak load and the subsequent fall in load are well captured.The effect of solid fraction on mechanical response is in qualitative agreement with experiments.
基金supported by the National Science and Technology Major Project of China(No.2017ZX05005-004).
文摘There are complex heterogeneous entities in the underground medium,and the heterogeneous scale has a substantial impact on wave propagation.In this study,we used a set of 11 samples of glass beads as high-velocity heterogeneous bodies to evaluate the impact of such heterogeneous bodies on the propagation of P-wave.We vary the heterogeneous scale by changing the diameter of the glass beads from 0.18 to 11 mm while keeping the same volume proportion(10%)of the beads for the set of 11 samples.The pulse transmission method was used to record measurements at the ultrasonic frequencies of 0.34,0.61,and 0.84 MHz in the homogeneous matrix.The relationship between P-wave fi eld features and heterogeneity scale,P-wave velocity,and the multiple of the wave number and heterogeneous scale(ka)was observed in the laboratory,which has sparked widespread interest and research.Heterogeneous scale affects P-wave propagation,and its wave field changes are complex.The waveform,amplitude,and velocity of the recorded P-waves correlate with the heterogeneous scale.For the forward scattering while large-scale heterogeneities,noticeable direct and diff racted waves are observed in the laboratory,which indicates that the infl uence of direct and diff racted waves cannot be ignored for large-scale heterogeneities.The relationship between velocity and ka shows frequency dependence;the reason is that the magnitude of change in velocity caused by wave number is diff erent from that caused by heterogeneous scale.According to the change in the recorded waveform,amplitude variation,or the relationship between the velocity measured at diff erent frequencies and the heterogeneous scale,the identifi ed turning points of the ray approximation are all around ka=10.When ka is less than 1,the velocity changes slowly and gradually approaches the eff ective medium velocity.The ray velocity measured for heterogeneous media with large velocity perturbations in the laboratory is signifi cantly smaller than the velocity predicted by the perturbation theory.