期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
MSP-Net:多尺度点云分类网络 被引量:13
1
作者 白静 徐浩钧 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第11期1917-1924,共8页
针对传统点云分类网络难以充分发挥卷积神经网络优势的问题,提出一种多尺度点云分类网络MSP-Net.首先,基于局部区域划分的完备性、自适应性、重叠性及多尺度特性要求,提出了多尺度局部区域划分算法,并以点云及不同层次的特征为输入,得... 针对传统点云分类网络难以充分发挥卷积神经网络优势的问题,提出一种多尺度点云分类网络MSP-Net.首先,基于局部区域划分的完备性、自适应性、重叠性及多尺度特性要求,提出了多尺度局部区域划分算法,并以点云及不同层次的特征为输入,得到多尺度局部区域;然后构建了包含单尺度特征提取、低层次特征聚合及多尺度特征融合等模块的多尺度点云分类网络.该网络充分地模拟了卷积神经网络的作用原理,具备随着网络尺度和深度的增加,局部感受野越来越大,特征抽象程度越来越高的基本特征.最后将该算法应用在标准公开数据集ModelNet10和ModelNet40上,分别取得了94.71%和91.73%的分类准确率,表明该算法在同类工作中处于领先或相当的水平,验证了算法思想的可行性及有效性. 展开更多
关键词 多尺度点云 三维模型分类 深度学习 多尺度分类网络
下载PDF
基于离群点探测的点云间距离估计改进算法 被引量:2
2
作者 王骈臻 夏元平 +2 位作者 刘华 舒研鑫 周欣 《江西科学》 2023年第5期970-976,984,共8页
针对传统多尺度模型对模型点云比较方法(Multiscale Model to Model Cloud Comparison,M3C2)计算法向量与形变量时易受离群点影响的缺点,提出一种基于离群点探测准则的改进算法。首先,在估计关键点法向量时,依据改进离群点探测准则迭代... 针对传统多尺度模型对模型点云比较方法(Multiscale Model to Model Cloud Comparison,M3C2)计算法向量与形变量时易受离群点影响的缺点,提出一种基于离群点探测准则的改进算法。首先,在估计关键点法向量时,依据改进离群点探测准则迭代剔除离群点,提高法向量估计的准确性,然后,通过离群点探测剔除圆柱内离群点,最后,结合正态分布加权计算形变量。实验结果表明,相较于M3C2原始算法,改进算法将法向量均方差精度指标提升50%以上,在形变量较大区域可将形变量估值均方差精度指标提高200%以上。改进算法具有更好的适用性和可靠性。 展开更多
关键词 多尺度模型对模型比较 离群探测 主成分分析 形变监测 RANSAC
下载PDF
基于多尺度语义分割的城区LiDAR点云滤波 被引量:1
3
作者 代李犇 万一 张永军 《测绘地理信息》 CSCD 2023年第6期68-72,共5页
针对传统点云滤波算法参数多、端到端的深度学习点云滤波算法计算成本高等问题,设计了一种基于多尺度语义分割网络的点云滤波算法(multi-scale semantic segmenta⁃tion network for point cloud filtering,MSSF)。首先,对点云进行栅格... 针对传统点云滤波算法参数多、端到端的深度学习点云滤波算法计算成本高等问题,设计了一种基于多尺度语义分割网络的点云滤波算法(multi-scale semantic segmenta⁃tion network for point cloud filtering,MSSF)。首先,对点云进行栅格化并提取高程、强度等特征,得到多通道特征图;然后,基于多尺度跨层连接模块构建语义分割网络,以特征图为输入提取地面像素,映射到三维点云获取初始高程基准点,经过插值拟合得到地面高程基准面;最后,设置点到该基准面的距离阈值,实现点云滤波。实验结果表明:该算法减少了参数设置,获得了更高的精度,能实现城市区域的Li⁃DAR点云稳健滤波。 展开更多
关键词 滤波 多通道特征图提取 语义分割 多尺度语义分割网络的滤波算法
原文传递
车载激光扫描数据路坎点云提取方法 被引量:16
4
作者 罗海峰 方莉娜 陈崇成 《地球信息科学学报》 CSCD 北大核心 2017年第7期861-871,共11页
车载激光扫描系统能够快速准确地获取街道环境的点云数据,但由于扫描点云的点密度高、数据量大、空间分布不均匀、地物相互遮挡及城市街道环境复杂等特点,难以直接从原始点云数据中提取出路坎点云。本文首先通过分析路坎点云的空间分布... 车载激光扫描系统能够快速准确地获取街道环境的点云数据,但由于扫描点云的点密度高、数据量大、空间分布不均匀、地物相互遮挡及城市街道环境复杂等特点,难以直接从原始点云数据中提取出路坎点云。本文首先通过分析路坎点云的空间分布特征和局部几何特征,构建包含相对高程、法向量方向、多尺度高程差及多尺度高程方差的点云特征向量;然后,采用SVM提取城市街道环境车载激光扫描数据中的路坎点云,并对提取结果进行聚类去噪,优化路坎点云。最后,通过Street Mapper 360系统和Lynx Mobile Mapper V100系统采集的4份不同城市街道环境车载激光扫描数据对本文方法进行验证,其中路坎点云提取结果的完整度均超过了94.99%、准确度均超过91.88%、精度亦均达到了90.55%以上。实验结果表明,本文方法能够精确地提取复杂城市街道环境中规则或不规则的路坎点云,且具有较强的稳健性,适用于各类复杂的城市街道环境。 展开更多
关键词 车载激光 支持向量机(SVM) 多尺度点云特征 特征向量 路坎提取
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部