期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
采用改进多尺度符号动力学熵的铁路机车轴承故障诊断 被引量:2
1
作者 张龙 刘皓阳 肖乾 《华东交通大学学报》 2023年第5期32-40,共9页
针对铁路机车轴承在真实复杂环境下故障特征难以提取而导致故障诊断困难的问题,提出一种改进多尺度符号动力学熵(IMSDE)的铁路机车轴承故障诊断方法。首先,通过邻域滑移均值化的方式改进多尺度符号动力学熵,克服了传统粗粒化造成的熵值... 针对铁路机车轴承在真实复杂环境下故障特征难以提取而导致故障诊断困难的问题,提出一种改进多尺度符号动力学熵(IMSDE)的铁路机车轴承故障诊断方法。首先,通过邻域滑移均值化的方式改进多尺度符号动力学熵,克服了传统粗粒化造成的熵值偏差缺陷;然后,利用IMSDE充分提取振动信号在不同尺度下的关键故障特征;最后,结合极限学习机(ELM)实现铁路轴承不同故障类型与程度的识别。在此基础上,分别进行了3组试验分析。结果表明,对人为构造的轴承故障和工程实际产生的轴承故障,该方法都具有精准的故障识别效果,对比其他4种方法故障识别率更高,验证了该方法具有一定的工程实际应用价值。 展开更多
关键词 机车轴承 故障诊断 特征提取 多尺度符号动力学熵 极限学习机
下载PDF
基于多尺度迁移符号动力学熵和支持向量机的轴承诊断方法研究 被引量:1
2
作者 于广伟 闫莉 《西北工业大学学报》 EI CAS CSCD 北大核心 2023年第2期344-353,共10页
针对传统数据驱动故障诊断模型在机械系统诊断中存在的泛化能力下降甚至失效的问题,应用迁移学习的思想,提出了基于多尺度迁移符号动力学熵和支持向量机的故障识别算法。采用多尺度符号动力学熵提取故障特征,在此基础上提出基于迁移学... 针对传统数据驱动故障诊断模型在机械系统诊断中存在的泛化能力下降甚至失效的问题,应用迁移学习的思想,提出了基于多尺度迁移符号动力学熵和支持向量机的故障识别算法。采用多尺度符号动力学熵提取故障特征,在此基础上提出基于迁移学习的特征映射技术,使非同分布数据的特征在映射后分布差异减小。对多尺度迁移符号动力学熵方法的参数进行优选,将其输入支持向量机中,进一步提高最终的故障识别率。通过轴承故障实验信号的测试证明,基于多尺度迁移符号动力学熵的滚动轴承诊断方法能够有效提升数据驱动故障诊断模型的泛化能力,实现少量样本下滚动轴承不同故障位置的准确识别。 展开更多
关键词 多尺度迁移符号动力学 特征提取 迁移学习 故障诊断 滚动轴承
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部