期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向复杂验证码识别任务的轻量神经网络设计
1
作者 李昊 程辉 《计算机系统应用》 2021年第4期247-252,共6页
深层神经网络拥有更强特征表达能力的同时,也带来了优化难、训练成本高及梯度弥散等问题;参数数量的激增则导致模型过于臃肿,不利于其在移动端及工业控制设备等算力弱、存储小的平台上的部署.针对这些问题,构建了一种融合空洞卷积和多... 深层神经网络拥有更强特征表达能力的同时,也带来了优化难、训练成本高及梯度弥散等问题;参数数量的激增则导致模型过于臃肿,不利于其在移动端及工业控制设备等算力弱、存储小的平台上的部署.针对这些问题,构建了一种融合空洞卷积和多尺度稀疏结构的轻量神经网络对图像进行特征提取,实现对带有彩色图形噪声且字符扭曲粘连严重的验证码图像的端到端识别.将包含100万张验证码图像的数据集按98:1:1的比例划分为训练集、验证集和测试集,逐批参与训练.实验结果表明,该网络在大大减少参数数量的同时,具有测试集上98.9%的识别成功率. 展开更多
关键词 轻量化 卷积神经网络 多尺度稀疏网络结构 空洞卷积
下载PDF
一种基于改进AOD-Net的航拍图像去雾算法 被引量:9
2
作者 李永福 崔恒奇 +1 位作者 朱浩 张开碧 《自动化学报》 EI CAS CSCD 北大核心 2022年第6期1543-1559,共17页
针对航拍图像易受雾气影响,AOD-Net(All in one dehazing network)算法对图像去雾后容易出现细节模糊、对比度过高和图像偏暗等问题,本文提出了一种基于改进AOD-Net的航拍图像去雾算法.本文主要从网络结构、损失函数、训练方式三个方面... 针对航拍图像易受雾气影响,AOD-Net(All in one dehazing network)算法对图像去雾后容易出现细节模糊、对比度过高和图像偏暗等问题,本文提出了一种基于改进AOD-Net的航拍图像去雾算法.本文主要从网络结构、损失函数、训练方式三个方面对AOD-Net进行改良.首先在AOD-Net的第二个特征融合层上添加了第一层的特征图,用全逐点卷积替换了传统卷积方式,并用多尺度结构提升了网络对细节的处理能力.然后用包含有图像重构损失函数、SSIM(Structural similarity)损失函数以及TV(Total variation)损失函数的复合损失函数优化去雾图的对比度、亮度以及色彩饱和度.最后采用分段式的训练方式进一步提升了去雾图的质量.实验结果表明,经该算法去雾后的图像拥有令人满意的去雾结果,图像的饱和度和对比度相较于AOD-Net更自然.与其他对比算法相比,该算法在合成图像实验、真实航拍图像实验以及算法耗时测试的综合表现上更好,更适用于航拍图像实时去雾. 展开更多
关键词 航拍图像去雾 AOD-Net算法 多尺度网络结构 复合损失函数 分段式训练
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部