期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于多尺度融合模块和特征增强的杂草检测方法 被引量:17
1
作者 亢洁 刘港 郭国法 《农业机械学报》 EI CAS CSCD 北大核心 2022年第4期254-260,共7页
针对单步多框检测器(Single shot multibox detector,SSD)网络模型参数多、小目标检测效果差、作物与杂草检测精度低等问题,提出一种基于多尺度融合模块和特征增强的杂草检测方法。首先将轻量网络MobileNet作为SSD模型的特征提取网络,... 针对单步多框检测器(Single shot multibox detector,SSD)网络模型参数多、小目标检测效果差、作物与杂草检测精度低等问题,提出一种基于多尺度融合模块和特征增强的杂草检测方法。首先将轻量网络MobileNet作为SSD模型的特征提取网络,并设计了一种多尺度融合模块,将浅层特征图先通过通道注意力机制增强图像中的关键信息,再将特征图经过不同膨胀系数的扩张卷积扩大感受野,最后将两条分支进行特征融合,对于检测小目标的浅层特征图,在包含较多小目标细节信息的同时,还包含丰富的语义信息。在此基础上对输出的6个特征图经过通道注意力机制进行特征增强。实验结果表明,本文提出的基于多尺度融合模块和特征增强的杂草检测模型,在自然环境下甜菜与杂草图像数据集中,平均检测精度可达88.84%,较标准SSD模型提高了3.23个百分点,参数量减少57.09%,检测速度提高88.44%,同时模型对小目标作物与杂草以及叶片交叠情况的检测能力均有提高。 展开更多
关键词 杂草检测 SSD网络 多尺度融合模块 通道注意力机制
下载PDF
基于多尺度循环网络的运动模糊图像复原方法
2
作者 张甜 卢振坤 +1 位作者 纪佳奇 刘胜 《现代计算机》 2023年第10期1-8,共8页
针对目前图像去模糊恢复细节不好、泛化性能不高的问题,提出了一种基于多尺度循环网络的运动模糊图像复原算法,在编码端将多尺度特征融合模块和残差密集连接模块融合,引入多尺度残差密集型连接模块。同时引入一种注意力机制并将融合了... 针对目前图像去模糊恢复细节不好、泛化性能不高的问题,提出了一种基于多尺度循环网络的运动模糊图像复原算法,在编码端将多尺度特征融合模块和残差密集连接模块融合,引入多尺度残差密集型连接模块。同时引入一种注意力机制并将融合了注意力机制的多尺度残差密集连接模块作为网络的基本结构。实验结果表明,与生成对抗网络相比,在GOPRO数据集的PSNR和SSIM最大分别提升了4.13 dB和0.0254 dB,和近年来效果最明显的SRN相比,Kohler数据集上的PSNR和SSIM分别提升了0.31 dB和0.0179 dB,具有更好的泛化性能。 展开更多
关键词 多尺度特征融合模块 残差密集型连接模块 注意力机制
下载PDF
融合多尺度Transformer的皮肤病变分割算法 被引量:1
3
作者 梁礼明 周珑颂 +1 位作者 尹江 盛校棋 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第4期1086-1098,共13页
针对现有皮肤病变图像分割时缺乏多尺度特征提取,从而导致细节信息缺失和病变区域误分割的问题,本文提出一种融合多尺度Transformer的编解码网络皮肤病变分割算法。首先运用Transformer模块构建分层编码器,分层编码器从全局特征变化角... 针对现有皮肤病变图像分割时缺乏多尺度特征提取,从而导致细节信息缺失和病变区域误分割的问题,本文提出一种融合多尺度Transformer的编解码网络皮肤病变分割算法。首先运用Transformer模块构建分层编码器,分层编码器从全局特征变化角度出发,多尺度分析皮肤病变区域;然后利用多尺度融合模块、通道注意力模块和联合层构建融合解码器,多尺度融合模块互补分层编码器中浅层网络信息与深层网络信息,增强空间信息和语义信息间的依赖关系,通道注意力模块能够有效识别特征丰富的通道,提高算法分割精度;最后引入扩展模块恢复图像大小以匹配实际需求。将该算法在ISBI2016、ISBI2017和ISIC2018三个公共数据集上进行实验测试,其像素精度分别为96.70%、94.50%和95.39%,平均交并比分别为91.69%、85.74%和89.29%,算法测试整体性能优于现有算法。仿真实验证明,多尺度Transformer编解码网络能够有效地分割皮肤病变图像。 展开更多
关键词 计算机应用技术 皮肤病变 图像分割 TRANSFORMER 多尺度融合模块 通道注意力模块
原文传递
基于MLDCSAU-Net的视网膜图像血管分割算法 被引量:1
4
作者 汪恩惠 余艳梅 +2 位作者 杜佳成 庞博 陶青川 《现代计算机》 2024年第2期44-48,共5页
视网膜图像中血管的准确分割有助于对眼部病变的观察。为了提高视网膜图像血管分割精度和特征信息复用率以及精简模型,从网络框架入手,提出一种结合DCSAU-Net、多尺度信息融合模块以及Ghost模块的视网膜图像血管分割模型——MLDCSAU-Ne... 视网膜图像中血管的准确分割有助于对眼部病变的观察。为了提高视网膜图像血管分割精度和特征信息复用率以及精简模型,从网络框架入手,提出一种结合DCSAU-Net、多尺度信息融合模块以及Ghost模块的视网膜图像血管分割模型——MLDCSAU-Net模型。模型改进主要包括两个方面:首先在跳跃连接之后引入多尺度信息融合模块;其次编码器端使用Ghost模块替换编码器端的CSA模块。实验结果表明:多尺度信息融合模块对于模型的分割准确率有较大提升;Ghost模块有效减少了模型参数量。在STARE、CHASEDB1和HRF三个公开数据集中MLDCSAU-Net模型的准确率、查准率、查全率和F1分数均高于原模型,同时参数量更少。 展开更多
关键词 视网膜图像血管分割 多尺度信息融合模块 Ghost模块
下载PDF
基于改进YOLO-MAO检测框架的笼养白羽肉鸡行为检测方法
5
作者 夏元天 寇旭鹏 +1 位作者 薛洪成 李林 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期103-111,共9页
在大规模的肉鸡养殖场中,肉鸡行为通常由饲养员或专业兽医观察和分析,以确定肉鸡健康状况和养殖环境状态。然而这种方法耗时且主观。此外,在笼养环境中,由于鸡只的高密度和严重的互相遮挡,行为的视觉特征不明显,传统的检测算法不能准确... 在大规模的肉鸡养殖场中,肉鸡行为通常由饲养员或专业兽医观察和分析,以确定肉鸡健康状况和养殖环境状态。然而这种方法耗时且主观。此外,在笼养环境中,由于鸡只的高密度和严重的互相遮挡,行为的视觉特征不明显,传统的检测算法不能准确地识别鸡只的行为特征。因此,本文提出一种改进的笼养白羽肉鸡行为检测的目标检测算法。所提出的算法由2个模块组成:多尺度细节特征融合模块(MDF)和目标关系推理模块(ORI)。多尺度细节特征模块充分利用和提取网络浅层特征映射中包含的多尺度细节特征,并将它们融合到负责相应尺度检测的特征映射中,实现细节特征的有效传输和补充。目标关系推理模块充分利用对象之间的位置关系进行推理和判断,使模型能更充分地利用对象之间的潜在关系来辅助检测。为验证所提出算法的有效性,在目标检测领域具有权威性的COCO公共数据集以及真实的大规模笼养白羽肉鸡养殖环境中自建的行为检测数据集上进行大量对比实验。实验结果表明,与其他最先进的模型相比,本文所提出的改进算法在COCO数据集和自建数据集上均达到最佳识别准确率;对喂食、饮水、移动和张嘴等影响肉鸡健康状况较为重要的行为进行检测,识别精度分别达99.6%、98.7%、99.2%和98.3%。 展开更多
关键词 白羽肉鸡 行为识别 目标检测 多尺度细节特征融合模块 关系推理模块
下载PDF
基于BM-TransUNet的咽后壁识别分割
6
作者 王世刚 孙静雯 《计算机系统应用》 2024年第7期94-102,共9页
图像分割经历了从基于传统的阈值分割等方法逐步发展到基于卷积神经网络的方法.传统的卷积神经网络在分割领域中表现突出,但训练速度慢、分割精度不够高等局限性也逐渐显现.为了克服这些局限性,本文在TransUNet网络的基础上进行改进,提... 图像分割经历了从基于传统的阈值分割等方法逐步发展到基于卷积神经网络的方法.传统的卷积神经网络在分割领域中表现突出,但训练速度慢、分割精度不够高等局限性也逐渐显现.为了克服这些局限性,本文在TransUNet网络的基础上进行改进,提出了基于BM-TransUNet网络的图像分割识别方法,在TransUNet网络的在第1层之后加上深度可分离卷积模块,并在编码器下采样的卷积层后引入注意力机制模块,让算法更好地探索分割对象特征,同时在编码器与解码器之间引入多尺度特征融合模块FPN.本文基于自制的咽后壁数据集,用于图像分割训练,并将训练后的BM-TransUNet网络与多种传统分割网络的效果进行对比.实验结果表明,相比于其他传统的深度学习模型,BM-TransUNet网络的识别方法具有较高的分类准确性和泛化能力,精确度Precision和Dice系数分别达到了93.61%和90.76%,显示出较好的计算效率,能有效地应用于分割任务. 展开更多
关键词 BM-TransUNet网络 图像分割 注意力机制模块 多尺度特征融合模块 咽后壁数据集
下载PDF
复杂场景下基于改进DiMP算法的精确目标跟踪
7
作者 忻瑶 韩华 +2 位作者 王春媛 熊雨滋 许莹莹 《智能计算机与应用》 2022年第12期82-87,92,共7页
针对DiMP目标跟踪算法在自然场景下遇到遮挡及背景干扰导致跟踪表现不佳的问题,提出了改进的DiMP精确目标跟踪算法。在图像预处理阶段创新性地设计了一个任意灰度块替换策略来丰富样本的信息;将特征提取网络ResNet-50提取的目标各阶段... 针对DiMP目标跟踪算法在自然场景下遇到遮挡及背景干扰导致跟踪表现不佳的问题,提出了改进的DiMP精确目标跟踪算法。在图像预处理阶段创新性地设计了一个任意灰度块替换策略来丰富样本的信息;将特征提取网络ResNet-50提取的目标各阶段的特征图输入到设计的多尺度融合模块中进行正向和反向的充分融合,得到包含更多位置信息和语义信息的特征图;随后特征图输入到模板预测模块中进行在线更新操作,进而得到判别力更强的目标模板。实验表明:该算法在UAV123数据集的遮挡和背景干扰测试中的成功率和精确率分别提高8%、4.15%和9%、6.30%;同时,在VOT2018的EAO指标上提高1.36%,在UAV123的成功率和精确率指标上分别提高3.89%和3.06%。说明改进的DiMP算法在对遮挡与背景干扰问题上优势明显,进而提升了算法的整体表现。 展开更多
关键词 替换策略 多尺度融合模块 DiMP 目标跟踪
下载PDF
MRAU-net网络下的X光胸片肺野分割算法
8
作者 胡俊 李平 《华侨大学学报(自然科学版)》 CAS 2023年第3期398-406,共9页
为了解决U-net网络进行X光胸片肺野分割时,受限于特征提取能力不足导致分割结果不精确的问题,提出一种多尺度残差注意力U型网络(MRAU-net)模型.利用多尺度信息融合(MIF)模块,改善网络结构,增加对多尺度信息的获取;利用通道和空间双注意... 为了解决U-net网络进行X光胸片肺野分割时,受限于特征提取能力不足导致分割结果不精确的问题,提出一种多尺度残差注意力U型网络(MRAU-net)模型.利用多尺度信息融合(MIF)模块,改善网络结构,增加对多尺度信息的获取;利用通道和空间双注意力(CSDA)模块,解决网络在有限算力下的信息过载问题.同时,对残差模块进行改进,并与U-net网络进行深度结合,提升网络的学习稳定性,缓解梯度消失和过拟合现象.实验结果表明:文中方法具有优秀的X光胸片肺野分割能力,能获得更精确的分割结果. 展开更多
关键词 胸片肺野分割 U-net网络 多尺度信息融合模块 通道和空间双注意力模块 深度残差
下载PDF
铸件缺陷语义分割的编码器-解码器网络
9
作者 付宇彤 李敏 +1 位作者 黄及远 王璐 《制造业自动化》 北大核心 2023年第5期207-214,共8页
深度学习的快速发展扩展了基于视觉的缺陷检测应用。针对铸件缺陷类间差异小、类内差异大、缺陷规模小等难点,提出一种编码器-解码器架构的语义分割网络,使用在ImageNet上预训练的ResNeSt主干网络作为特征提取器,构建密集连接的多尺度... 深度学习的快速发展扩展了基于视觉的缺陷检测应用。针对铸件缺陷类间差异小、类内差异大、缺陷规模小等难点,提出一种编码器-解码器架构的语义分割网络,使用在ImageNet上预训练的ResNeSt主干网络作为特征提取器,构建密集连接的多尺度特征融合模块提升有效特征利用率,增强网络特征表示能力,解码器端融合低层级特征改善缺陷边缘分割效果,再通过双线性插值进行上采样以恢复空间分辨率。网络在构建的X射线铸件缺陷分割数据集上进行训练和评估,采用混合损失函数解决数据集样本不均衡问题,提升模型性能。实验结果表明,提出的语义分割方法能够提升铸件缺陷分割精度,效果优于其他语义分割方法。 展开更多
关键词 铸件缺陷检测 深度学习 语义分割 ResNeSt 密集多尺度特征融合模块
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部