A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amp...A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amplitude-versus-offset(AVO) method is not applicable. The frequency-dependent AVO method considers the dependency of the seismic amplitude to frequency and uses this dependency to obtain information regarding the fluids in the reservoir fractures. We propose an improved Bayesian inversion method based on the parameterization of the Chapman model. The proposed method is based on 1) inelastic attribute inversion by the FDAVO method and 2) Bayesian statistics for fluid identification. First, we invert the inelastic fracture parameters by formulating an error function, which is used to match observations and model data. Second, we identify fluid types by using a Markov random field a priori model considering data from various sources, such as prestack inversion and well logs. We consider the inelastic parameters to take advantage of the viscosity differences among the different fluids possible. Finally, we use the maximum posteriori probability for obtaining the best lithology/fluid identification results.展开更多
基金supported by the 973 Program of China(No.2013CB429805)the National Natural Science Foundation of China(No.41174080)
文摘A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amplitude-versus-offset(AVO) method is not applicable. The frequency-dependent AVO method considers the dependency of the seismic amplitude to frequency and uses this dependency to obtain information regarding the fluids in the reservoir fractures. We propose an improved Bayesian inversion method based on the parameterization of the Chapman model. The proposed method is based on 1) inelastic attribute inversion by the FDAVO method and 2) Bayesian statistics for fluid identification. First, we invert the inelastic fracture parameters by formulating an error function, which is used to match observations and model data. Second, we identify fluid types by using a Markov random field a priori model considering data from various sources, such as prestack inversion and well logs. We consider the inelastic parameters to take advantage of the viscosity differences among the different fluids possible. Finally, we use the maximum posteriori probability for obtaining the best lithology/fluid identification results.