期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合 被引量:18
1
作者 朱浩然 刘云清 张文颖 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1294-1300,共7页
在低照度环境下拍摄的可见光图像可视性较差,若将其与红外图像直接融合会导致融合结果清晰度不理想。针对这一问题,该文提出一种基于对比度增强与多尺度边缘保持分解的图像融合方法。首先,在融合之前采用基于导向滤波的自适应增强算法... 在低照度环境下拍摄的可见光图像可视性较差,若将其与红外图像直接融合会导致融合结果清晰度不理想。针对这一问题,该文提出一种基于对比度增强与多尺度边缘保持分解的图像融合方法。首先,在融合之前采用基于导向滤波的自适应增强算法提高可见光图像中暗区内容的可视性。其次,通过一种尺度感知边缘保持滤波器对输入图像进行多尺度分解。再次,应用频率调谐滤波构造显著图。最后,利用由导向滤波生成的权重图重构融合图像。实验结果表明,所提方法不仅可以使细节信息更突出,而且还能够有效地抑制伪影。 展开更多
关键词 图像融合 对比度增强 多尺度边缘保持分解 导向滤波器
下载PDF
基于简化脉冲耦合神经网络和改进稀疏表示的脑部图像融合算法
2
作者 张亚加 邱啟蒙 +1 位作者 高智强 邵建龙 《光电子.激光》 CAS CSCD 北大核心 2022年第11期1225-1232,共8页
为解决单一模态脑部图像存在的局限性,进一步突出细节特征,增强视觉效果,提出一个基于多尺度边缘保持分解和改进稀疏表示(improved sparse representation,ISR)的算法框架。首先,分解源图像获得高频子带和低频子带。其次,采用多范数加... 为解决单一模态脑部图像存在的局限性,进一步突出细节特征,增强视觉效果,提出一个基于多尺度边缘保持分解和改进稀疏表示(improved sparse representation,ISR)的算法框架。首先,分解源图像获得高频子带和低频子带。其次,采用多范数加权度量改进的稀疏表示融合低频子带,以多尺度形态学梯度(multiscale morphological gradient,MSMG)改进的引导滤波器去除细节特征;同时,经简化的脉冲耦合神经网络(simplified pulseoupled neural network,SPCNN)融合其高频子带。最后,逆变换得到融合后的脑部图像。实验证明,本文在边缘信息的保护,融合效率的提高,时间成本的节约等方面优势显著。 展开更多
关键词 简化脉冲耦合神经网络(SPCNN) 改进稀疏表示(ISR) 多尺度边缘保持分解 多尺度形态学梯度(MSMG) 多范数加权度量
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部