期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于含噪Retinex模型的煤矿低光照图像增强方法 被引量:3
1
作者 李正龙 王宏伟 +2 位作者 曹文艳 张夫净 王宇衡 《工矿自动化》 CSCD 北大核心 2023年第4期70-77,共8页
低光照图像会导致许多计算机视觉任务达不到预期效果,影响后续图像分析与智能决策。针对现有煤矿井下低光照图像增强方法未考虑图像现实噪声的问题,提出一种基于含噪Retinex模型的煤矿低光照图像增强方法。建立了含噪Retienx模型,利用... 低光照图像会导致许多计算机视觉任务达不到预期效果,影响后续图像分析与智能决策。针对现有煤矿井下低光照图像增强方法未考虑图像现实噪声的问题,提出一种基于含噪Retinex模型的煤矿低光照图像增强方法。建立了含噪Retienx模型,利用噪声估计模块(NEM)估计现实噪声,将原图像和估计噪声作为光照分量估计模块(IEM)和反射分量估计模块(REM)的输入,生成光照分量与反射分量并对二者进行耦合,同时对光照分量进行伽马校正等调整,对耦合后的图像及调整后的光照分量进行除法运算,得到最终的增强图像。NEM通过3层CNN对含噪图像进行拜耳采样,然后重构生成与原图像大小一致的三通道特征图。IEM与REM均以ResNet-34作为图像特征提取网络,引入多尺度非对称卷积与注意力模块(MACAM),以增强网络的细节过滤能力及重要特征筛选能力。定性和定量评估结果表明,该方法能够平衡光源与黑暗环境之间的关系,降低现实噪声的影响,在图像自然度、真实度、对比度、结构等方面均具有良好性能,图像增强效果优于Retinex-Net,Zero-DCE,DRBN,DSLR,TBEFN,RUAS等模型。通过消融实验验证了NEM与MACAM的有效性。 展开更多
关键词 煤矿低光照图像 图像增强 含噪Retinex模型 噪声估计 拜耳采样 多尺度非对称卷积 注意力模块
下载PDF
结合FCN和多特征的全极化SAR土地覆盖分类 被引量:4
2
作者 谢凯浪 赵泉华 李玉 《测绘科学》 CSCD 北大核心 2020年第1期77-83,98,共8页
针对极化合成孔径雷达(PolSAR)影像地物分类特征表征性弱,以及传统全卷积网络(FCN)分类精度较低、效果差的问题,该文提出了一种结合FCN和多特征的全极化SAR土地覆盖分类算法。首先,根据PolSAR影像和极化目标分解获取散射特征参数构建特... 针对极化合成孔径雷达(PolSAR)影像地物分类特征表征性弱,以及传统全卷积网络(FCN)分类精度较低、效果差的问题,该文提出了一种结合FCN和多特征的全极化SAR土地覆盖分类算法。首先,根据PolSAR影像和极化目标分解获取散射特征参数构建特征空间,利用主成分分析(PCA)对特征空间实现降维,以优化特征组合;接着,以SegNet建模思想为基础,在网络中层嵌入多层多尺度非对称卷积单元(MACU)结构,并在中层添加代价函数构建双代价收敛(DC)结构,基于此设计了DC-MA-FCN网络;然后,以优化后的特征组合为输入,通过DC-MA-FCN网络进行多层自主学习训练网络,并利用训练好的网络进行PolSAR影像初始分类;最后,组合DC-MA-FCN网络分类结果和形态学方法实现最终分类。该方法对两地区的PolSAR影像进行取样和试验,并使用多种评价指标定量分析,表明了算法的可行性和有效性。 展开更多
关键词 极化SAR 卷积网络 多尺度非对称卷积单元 代价函数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部