The financial market volatility forecasting is regarded as a challenging task because of irreg ularity, high fluctuation, and noise. In this study, a multiscale ensemble forecasting model is proposed. The original fin...The financial market volatility forecasting is regarded as a challenging task because of irreg ularity, high fluctuation, and noise. In this study, a multiscale ensemble forecasting model is proposed. The original financial series are decomposed firstly different scale components (i.e., approximation and details) using the maximum overlap discrete wavelet transform (MODWT). The approximation is pre- dicted by a hybrid forecasting model that combines autoregressive integrated moving average (ARIMA) with feedforward neural network (FNN). ARIMA model is used to generate a linear forecast, and then FNN is developed as a tool for nonlinear pattern recognition to correct the estimation error in ARIMA forecast. Moreover, details are predicted by Elman neural networks. Three weekly exchange rates data are collected to establish and validate the forecasting model. Empirical results demonstrate consistent better performance of the proposed approach.展开更多
基金supported by the Humanities and Social Sciences Youth Foundation of the Ministry of Education of PR of China under Grant No.11YJC870028the Selfdetermined Research Funds of CCNU from the Colleges’Basic Research and Operation of MOE under Grant No.CCNU13F030+1 种基金China Postdoctoral Science Foundation under Grant No.2013M530753National Science Foundation of China under Grant No.71390335
文摘The financial market volatility forecasting is regarded as a challenging task because of irreg ularity, high fluctuation, and noise. In this study, a multiscale ensemble forecasting model is proposed. The original financial series are decomposed firstly different scale components (i.e., approximation and details) using the maximum overlap discrete wavelet transform (MODWT). The approximation is pre- dicted by a hybrid forecasting model that combines autoregressive integrated moving average (ARIMA) with feedforward neural network (FNN). ARIMA model is used to generate a linear forecast, and then FNN is developed as a tool for nonlinear pattern recognition to correct the estimation error in ARIMA forecast. Moreover, details are predicted by Elman neural networks. Three weekly exchange rates data are collected to establish and validate the forecasting model. Empirical results demonstrate consistent better performance of the proposed approach.