期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
“无线组网与性能测试”综合教学实验设计
1
作者 黄英 雷菁 黎灿 《实验室研究与探索》 CAS 北大核心 2024年第6期188-196,218,共10页
针对综合实验中知识点融会贯通不够,工程性不强等问题,设计了“无线组网与性能测试”综合实验。以应急通信、军事演习为背景,涵盖环境勘察、链路预算、组网设计、性能测试、技术优化等环节,设置多层任务,逐步提升学生解决复杂问题的综... 针对综合实验中知识点融会贯通不够,工程性不强等问题,设计了“无线组网与性能测试”综合实验。以应急通信、军事演习为背景,涵盖环境勘察、链路预算、组网设计、性能测试、技术优化等环节,设置多层任务,逐步提升学生解决复杂问题的综合能力,培养学生不断探索的科学精神。紧跟通信行业发展,提出以“学生为中心”,采用“组内协作、组间较量”机制,创新任务驱动的PBL教学,构建“多维度、全方位”的评价机制。有助于学生专业知识的综合运用和工程素养与科学思维的培养,最终形成学生自身的知识架构,实现实验教学的“铸魂性、创新性、高阶性、挑战度”。 展开更多
关键词 综合实验教学 多层任务 以学生为中心 PBL教学
下载PDF
复杂零件网络化制造的生产加工状态模型研究 被引量:1
2
作者 杨胜富 孙卫红 鲁文超 《机床与液压》 北大核心 2013年第7期84-88,共5页
针对网络化制造环境下,跟踪复杂零件的生产加工状态效率低,建立了生产状态清单模型。该模型采用层级清单的组成方案。在模型构建过程中,建立以制造资源层为枢纽,由零件层、制造资源层、任务层组成的多层状态清单模型;然后运用2进制数和1... 针对网络化制造环境下,跟踪复杂零件的生产加工状态效率低,建立了生产状态清单模型。该模型采用层级清单的组成方案。在模型构建过程中,建立以制造资源层为枢纽,由零件层、制造资源层、任务层组成的多层状态清单模型;然后运用2进制数和16进制数计算出清单中各层的状态值;并将模型应用于某企业网络化制造系统,提高了该企业跟踪复杂零件生产加工状态的效率,同时证明了该模型的可行性和实用性。 展开更多
关键词 网络化制造 状态清单 多层任务状态
下载PDF
Serial structure multi-task learning method for predicting reservoir parameters 被引量:1
3
作者 Xu Bin-Sen Li Ning +4 位作者 Xiao Li-Zhi Wu Hong-Liang Feng-Zhou Wang Bing Wang Ke-Wen 《Applied Geophysics》 SCIE CSCD 2022年第4期513-527,604,共16页
Buiding data-driven models using machine learning methods has gradually become a common approach for studying reservoir parameters.Among these methods,deep learning methods are highly effective.From the perspective of... Buiding data-driven models using machine learning methods has gradually become a common approach for studying reservoir parameters.Among these methods,deep learning methods are highly effective.From the perspective of multi-task learning,this paper uses six types of logging data—acoustic logging(AC),gamma ray(GR),compensated neutron porosity(CNL),density(DEN),deep and shallow lateral resistivity(LLD)and shallow lateral resistivity(LLS)—that are inputs and three reservoir parameters that are outputs to build a porosity saturation permeability network(PSP-Net)that can predict porosity,saturation,and permeability values simultaneously.These logging data are obtained from 108 training wells in a medium₋low permeability oilfield block in the western district of China.PSP-Net method adopts a serial structure to realize transfer learning of reservoir-parameter characteristics.Compared with other existing methods at the stage of academic exploration to simulating industrial applications,the proposed method overcomes the disadvantages inherent in single-task learning reservoir-parameter prediction models,including easily overfitting and heavy model-training workload.Additionally,the proposed method demonstrates good anti-overfitting and generalization capabilities,integrating professional knowledge and experience.In 37 test wells,compared with the existing method,the proposed method exhibited an average error reduction of 10.44%,27.79%,and 28.83%from porosity,saturation,permeability calculation.The prediction and actual permeabilities are within one order of magnitude.The training on PSP-Net are simpler and more convenient than other single-task learning methods discussed in this paper.Furthermore,the findings of this paper can help in the re-examination of old oilfield wells and the completion of logging data. 展开更多
关键词 Deep learning Multi-task learning Reservoir-parameter prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部