期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种改进的多层递阶预报方法研究 被引量:13
1
作者 张晓东 韩志刚 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2002年第3期436-439,共4页
为解决多层递阶方法的预报效果不稳定 ,特别是预报因子之间存在较大量级差异时预报不稳定的问题 ,给出了一种改进的多层递阶预报方法———多层递阶回归分析方法 .该方法将原模型中的各项看作回归变量作线性回归 ,再以回归系数与预报因... 为解决多层递阶方法的预报效果不稳定 ,特别是预报因子之间存在较大量级差异时预报不稳定的问题 ,给出了一种改进的多层递阶预报方法———多层递阶回归分析方法 .该方法将原模型中的各项看作回归变量作线性回归 ,再以回归系数与预报因子的乘积作为对原预报因子的修正变量 ,然后进行多层递阶预报 .该方法集多层递阶和回归分析两者的优点 ,既能较好地体现高相关因子在预报模型中的重要作用 。 展开更多
关键词 多层递阶预报方法 多层递阶 回归分析 多层递阶回归分析方法 线性回归 预报模型 控制论
下载PDF
基于多层递阶回归分析的轧钢煤气用量预测
2
作者 李玲玲 吴敏 曹卫华 《控制工程》 CSCD 2004年第S2期33-35,共3页
以某钢铁企业为背景,基于煤气用户的历史数据,通过多层递阶回归分析建立相应的消耗预报模型,从而对煤气用量进行预测。首先把统计样本中的各个高相关因子作为回归变量进行线性回归处理,然后以回归系数与预报因子的乘积作为对修正量来进... 以某钢铁企业为背景,基于煤气用户的历史数据,通过多层递阶回归分析建立相应的消耗预报模型,从而对煤气用量进行预测。首先把统计样本中的各个高相关因子作为回归变量进行线性回归处理,然后以回归系数与预报因子的乘积作为对修正量来进行多层递阶预报。这种多层递阶与回归分析方法,既能较好地体现高相关因子在预报模型中的重要作用,又具有较强的适应性,可提高预报精度。实际工业应用证明了方法的有效性。 展开更多
关键词 预测 多层递阶回归分析方法 煤气平衡 故障诊断 等维新息处理
下载PDF
Alunite processing method selection using the AHP and TOPSIS approaches under fuzzy environment 被引量:3
3
作者 Alizadeh Shahab Salari Rad Mohammad Mehdi Bazzazi Abbas Aghajani 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1017-1023,共7页
Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and ... Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and economic data is available to evaluate methods. In addition, selecting the right approach for alunite beneficiation, requires introducing a wide range of criteria and careful analysis of alternatives.In this research, after studying the existing processes, 13 methods were considered and evaluated by 14 technical, economic and environmental analyzing criteria. Due to multiplicity of processing methods and attributes, in this paper, Multi Attribute Decision Making methods were employed to examine the appropriateness of choices. The Delphi Analytical Hierarchy Process(DAHP) was used for weighting selection criteria and Fuzzy TOPSIS approach was used to determine the most profitable candidates. Among 13 studied methods, Spanish, Svoronos and Hazan methods were respectively recognized to be the best choices. 展开更多
关键词 Alunite Mineral processing methods Multi Attribute Decision Making Delphi Analytical Hierarchy Process (DAHP)Fuzzy TOPSIS
下载PDF
“社会-技术协同”视角下的智慧城市转型研究与中国启示
4
作者 郭杰 汪坤 +2 位作者 许吉黎 张虹鸥 叶玉瑶 《地理研究》 CSSCI CSCD 北大核心 2024年第10期2511-2522,共12页
智慧城市转型成为新时期学术界和城市管理者最为关心的重要议题。然而,目前国内外相关研究存在一种“技术决定论”或“知识(社会)决定论”二元对立的倾向,缺乏对智慧城市转型过程中技术-社会互构关系的探讨。鉴于此,本文采用社会-技术... 智慧城市转型成为新时期学术界和城市管理者最为关心的重要议题。然而,目前国内外相关研究存在一种“技术决定论”或“知识(社会)决定论”二元对立的倾向,缺乏对智慧城市转型过程中技术-社会互构关系的探讨。鉴于此,本文采用社会-技术互构视角和“社会-技术系统”思想,对技术创新与社会关系重组的共生性展开讨论,旨在揭示作为社会-技术系统的智慧城市,如何在社会组织、治理机制和技术创新的同步演进下发生渐进转型。研究通过采用“社会-技术系统”的多层级分析方法,从微观利基、中观体制、宏观景域3个层面提出“社会-技术协同”的分析思路,以期为中国智慧城市转型研究提供理论与方法借鉴。 展开更多
关键词 智慧城市 社会-技术系统 互构论 多层分析方法
原文传递
Estimation of reservoir porosity using probabilistic neural network and seismic attributes 被引量:1
5
作者 HOU Qiang ZHU Jianwei LIN Bo 《Global Geology》 2016年第1期6-12,共7页
Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosi... Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosity.Seismic data contain abundant lithological information. Because there are inherent correlations between reservoir property and seismic data,it is possible to estimate reservoir porosity by using seismic data and attributes.Probabilistic neural network is a powerful tool to extract mathematical relation between two data sets. It has been used to extract the mathematical relation between porosity and seismic attributes. Firstly,a seismic impedance volume is calculated by seismic inversion. Secondly,several appropriate seismic attributes are extracted by using multi-regression analysis. Then a probabilistic neural network model is trained to obtain a mathematical relation between porosity and seismic attributes. Finally,this trained probabilistic neural network model is implemented to calculate a porosity data volume. This methodology could be utilized to find advantageous areas at the early stage of exploration. It is also helpful for the establishment of a reservoir model at the stage of reservoir development. 展开更多
关键词 POROSITY seismic attributes probabilistic neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部