Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and ...Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and economic data is available to evaluate methods. In addition, selecting the right approach for alunite beneficiation, requires introducing a wide range of criteria and careful analysis of alternatives.In this research, after studying the existing processes, 13 methods were considered and evaluated by 14 technical, economic and environmental analyzing criteria. Due to multiplicity of processing methods and attributes, in this paper, Multi Attribute Decision Making methods were employed to examine the appropriateness of choices. The Delphi Analytical Hierarchy Process(DAHP) was used for weighting selection criteria and Fuzzy TOPSIS approach was used to determine the most profitable candidates. Among 13 studied methods, Spanish, Svoronos and Hazan methods were respectively recognized to be the best choices.展开更多
Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosi...Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosity.Seismic data contain abundant lithological information. Because there are inherent correlations between reservoir property and seismic data,it is possible to estimate reservoir porosity by using seismic data and attributes.Probabilistic neural network is a powerful tool to extract mathematical relation between two data sets. It has been used to extract the mathematical relation between porosity and seismic attributes. Firstly,a seismic impedance volume is calculated by seismic inversion. Secondly,several appropriate seismic attributes are extracted by using multi-regression analysis. Then a probabilistic neural network model is trained to obtain a mathematical relation between porosity and seismic attributes. Finally,this trained probabilistic neural network model is implemented to calculate a porosity data volume. This methodology could be utilized to find advantageous areas at the early stage of exploration. It is also helpful for the establishment of a reservoir model at the stage of reservoir development.展开更多
文摘Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and economic data is available to evaluate methods. In addition, selecting the right approach for alunite beneficiation, requires introducing a wide range of criteria and careful analysis of alternatives.In this research, after studying the existing processes, 13 methods were considered and evaluated by 14 technical, economic and environmental analyzing criteria. Due to multiplicity of processing methods and attributes, in this paper, Multi Attribute Decision Making methods were employed to examine the appropriateness of choices. The Delphi Analytical Hierarchy Process(DAHP) was used for weighting selection criteria and Fuzzy TOPSIS approach was used to determine the most profitable candidates. Among 13 studied methods, Spanish, Svoronos and Hazan methods were respectively recognized to be the best choices.
文摘Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosity.Seismic data contain abundant lithological information. Because there are inherent correlations between reservoir property and seismic data,it is possible to estimate reservoir porosity by using seismic data and attributes.Probabilistic neural network is a powerful tool to extract mathematical relation between two data sets. It has been used to extract the mathematical relation between porosity and seismic attributes. Firstly,a seismic impedance volume is calculated by seismic inversion. Secondly,several appropriate seismic attributes are extracted by using multi-regression analysis. Then a probabilistic neural network model is trained to obtain a mathematical relation between porosity and seismic attributes. Finally,this trained probabilistic neural network model is implemented to calculate a porosity data volume. This methodology could be utilized to find advantageous areas at the early stage of exploration. It is also helpful for the establishment of a reservoir model at the stage of reservoir development.