This paper examines the utility of high-resolution airborne RGB orthophotos and LiDAR data for mapping residential land uses within the spatial limits of suburb of Athens, Greece. Modem remote sensors deliver ample in...This paper examines the utility of high-resolution airborne RGB orthophotos and LiDAR data for mapping residential land uses within the spatial limits of suburb of Athens, Greece. Modem remote sensors deliver ample information from the AOI (area of interest) for the estimation of 2D indicators or with the inclusion of elevation data 3D indicators for the classification of urban land. In this research, two of these indicators, BCR (building coverage ratio) and FAR (floor area ratio) are automatically evaluated. In the pre-processing step, the low resolution elevation data are fused with the high resolution optical data through a mean-shift based discontinuity preserving smoothing algorithm. The outcome is an nDSM (normalized digital surface model) comprised of upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. Following this step, a MFNN (multilayer feedforward neural network) is used to classify all pixels of the AOI into building or non-building categories. The information derived from the BCR and FAR building indicators, adapted to landscape characteristics of the test area is used to propose two new indices and an automatic post-classification based on the density of buildings.展开更多
A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by ad...A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by adjusting the weights of neurons in the designed neural network. When extracting the watermark extraction, those coefficients would be extracted by wavelet decomposition. With the trained multilayer feed forward neural network, the watermark would be obtained finally by measuring the weights of neurons. Experimental results show that the average error coding rate is only 6% for the proposed scheme and compared with other classical algorithms on the same tests, it is indicated that the proposed algorithm hashigher robustness, better invisibility and less loss on precision.展开更多
This paper is a research on the characteristics of power big data. According to the characteristics of "large volume", "species diversity", "sparse value density", "fast speed" of the power big data, a predict...This paper is a research on the characteristics of power big data. According to the characteristics of "large volume", "species diversity", "sparse value density", "fast speed" of the power big data, a prediction model of multi-source information fusion for large data is established, the fusion prediction of various parameters of the same object is realized. A combined algorithm of Map Reduce and neural network is used in this paper. Using clustering and nonlinear mapping ability of neural network, it can effectively solve the problem of nonlinear objective function approximation, and neural network is applied to the prediction of fusion. In this paper, neural network model using multi layer feed forward network--BP neural network. Simultaneously, to achieve large-scale data sets in parallel computing, the parallelism and real-time property of the algorithm should be considered, further combined with Reduce Map model, to realize the parallel processing of the algorithm, making it more suitable for the study of the fusion of large data. And finally, through simulation, it verifies the feasibility of the proposed model and algorithm.展开更多
Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network contr...Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network controller for system identification and control on temperature and hmnidity of heating and drying system of materials. And the paper introduces the structure and principles of neural network, and focuses on analyzing learning algorithm, training algorithm and limitation of the most widely applied multi-layer feed-forward neural network ( BP network) , based on which the paper proposes introducing momentum to improve BP network.展开更多
Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundatio...Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.展开更多
In recent years artificial neural networks are used to recognize the risk category of investigated companies. The research is based on data from 81 listed enterprises that applied for credit in domestic regional banks...In recent years artificial neural networks are used to recognize the risk category of investigated companies. The research is based on data from 81 listed enterprises that applied for credit in domestic regional banks operating in China. The backpropagation algorithm-the multilayer feedforward network structure is described. Each firm is described by 9 diagnostic variables and potential borrowers are classified into four classes. The efficiency of classification is evaluated in terms of classification errors calculated from the actual classification made by the credit officers. The results of the experiments show that LevenbergMarque training error is smallest among 4 learning algorithms and its performance is better, and application of artificial neural networks and classification functions can support the creditworthiness evaluation of borrowers.展开更多
文摘This paper examines the utility of high-resolution airborne RGB orthophotos and LiDAR data for mapping residential land uses within the spatial limits of suburb of Athens, Greece. Modem remote sensors deliver ample information from the AOI (area of interest) for the estimation of 2D indicators or with the inclusion of elevation data 3D indicators for the classification of urban land. In this research, two of these indicators, BCR (building coverage ratio) and FAR (floor area ratio) are automatically evaluated. In the pre-processing step, the low resolution elevation data are fused with the high resolution optical data through a mean-shift based discontinuity preserving smoothing algorithm. The outcome is an nDSM (normalized digital surface model) comprised of upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. Following this step, a MFNN (multilayer feedforward neural network) is used to classify all pixels of the AOI into building or non-building categories. The information derived from the BCR and FAR building indicators, adapted to landscape characteristics of the test area is used to propose two new indices and an automatic post-classification based on the density of buildings.
文摘A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by adjusting the weights of neurons in the designed neural network. When extracting the watermark extraction, those coefficients would be extracted by wavelet decomposition. With the trained multilayer feed forward neural network, the watermark would be obtained finally by measuring the weights of neurons. Experimental results show that the average error coding rate is only 6% for the proposed scheme and compared with other classical algorithms on the same tests, it is indicated that the proposed algorithm hashigher robustness, better invisibility and less loss on precision.
文摘This paper is a research on the characteristics of power big data. According to the characteristics of "large volume", "species diversity", "sparse value density", "fast speed" of the power big data, a prediction model of multi-source information fusion for large data is established, the fusion prediction of various parameters of the same object is realized. A combined algorithm of Map Reduce and neural network is used in this paper. Using clustering and nonlinear mapping ability of neural network, it can effectively solve the problem of nonlinear objective function approximation, and neural network is applied to the prediction of fusion. In this paper, neural network model using multi layer feed forward network--BP neural network. Simultaneously, to achieve large-scale data sets in parallel computing, the parallelism and real-time property of the algorithm should be considered, further combined with Reduce Map model, to realize the parallel processing of the algorithm, making it more suitable for the study of the fusion of large data. And finally, through simulation, it verifies the feasibility of the proposed model and algorithm.
文摘Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network controller for system identification and control on temperature and hmnidity of heating and drying system of materials. And the paper introduces the structure and principles of neural network, and focuses on analyzing learning algorithm, training algorithm and limitation of the most widely applied multi-layer feed-forward neural network ( BP network) , based on which the paper proposes introducing momentum to improve BP network.
文摘Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.
文摘In recent years artificial neural networks are used to recognize the risk category of investigated companies. The research is based on data from 81 listed enterprises that applied for credit in domestic regional banks operating in China. The backpropagation algorithm-the multilayer feedforward network structure is described. Each firm is described by 9 diagnostic variables and potential borrowers are classified into four classes. The efficiency of classification is evaluated in terms of classification errors calculated from the actual classification made by the credit officers. The results of the experiments show that LevenbergMarque training error is smallest among 4 learning algorithms and its performance is better, and application of artificial neural networks and classification functions can support the creditworthiness evaluation of borrowers.