HgCdTe多层异质结技术是未来主流红外探测器发展的重要技术方向,在高工作温度、双/多色和雪崩光电管等高性能红外探测器中扮演着重要的角色。近年来基于多层异质结构的Hg Cd Te高工作温度红外探测器得到了快速发展,尤其是以势垒阻挡型...HgCdTe多层异质结技术是未来主流红外探测器发展的重要技术方向,在高工作温度、双/多色和雪崩光电管等高性能红外探测器中扮演着重要的角色。近年来基于多层异质结构的Hg Cd Te高工作温度红外探测器得到了快速发展,尤其是以势垒阻挡型和非平衡工作P~+-π(ν)-N~+结构为主的器件受到了广泛的研究。本文系统介绍了势垒阻挡型和非平衡工作P~+-π(ν)-N~+结构HgCdTe红外探测器的暗电流抑制机理,分析了制约两种器件结构发展的关键问题,并对国内外的研究进展进行了综述。对多层异质结构Hg CdTe红外探测器的发展进行了总结与展望。展开更多
Regulating charge transfer to achieve specific transfer path can improve electron utilization and complete efficient photoreduction of CO_(2).Here,we fabricated a S-scheme heterojunction of CN/Fe-MOF by an in-situ ass...Regulating charge transfer to achieve specific transfer path can improve electron utilization and complete efficient photoreduction of CO_(2).Here,we fabricated a S-scheme heterojunction of CN/Fe-MOF by an in-situ assembly strategy.The S-scheme charge transfer mechanism was confirmed by band structure,electron spin resonance(ESR)and work function(Φ)analysis.On the one hand,the response of Fe-MOF in the visible region improved the utilization of light energy,thus increasing the ability of CN/Fe-MOF to generate charge carriers.On the other hand,CN,as the active site,not only had strong adsorption capacity for CO_(2),but also retained photogenerated electrons with high reduction capacity because of S-scheme charge transfer mechanism.Hence,in the absence of any sacrificial agent and cocatalyst,the optimized 50CN/Fe-MOF obtained the highest CO yield(19.17μmol g^(–1))under UV-Vis irradiation,which was almost 10 times higher than that of CN.In situ Fourier transform infrared spectra not only revealed that the photoreduction of CO_(2) occurred at the CN,but also demonstrated that the S-scheme charge transfer mechanism enabled 50CN/Fe-MOF to have a stronger ability to generate HCOO–than CN.展开更多
文摘HgCdTe多层异质结技术是未来主流红外探测器发展的重要技术方向,在高工作温度、双/多色和雪崩光电管等高性能红外探测器中扮演着重要的角色。近年来基于多层异质结构的Hg Cd Te高工作温度红外探测器得到了快速发展,尤其是以势垒阻挡型和非平衡工作P~+-π(ν)-N~+结构为主的器件受到了广泛的研究。本文系统介绍了势垒阻挡型和非平衡工作P~+-π(ν)-N~+结构HgCdTe红外探测器的暗电流抑制机理,分析了制约两种器件结构发展的关键问题,并对国内外的研究进展进行了综述。对多层异质结构Hg CdTe红外探测器的发展进行了总结与展望。
文摘Regulating charge transfer to achieve specific transfer path can improve electron utilization and complete efficient photoreduction of CO_(2).Here,we fabricated a S-scheme heterojunction of CN/Fe-MOF by an in-situ assembly strategy.The S-scheme charge transfer mechanism was confirmed by band structure,electron spin resonance(ESR)and work function(Φ)analysis.On the one hand,the response of Fe-MOF in the visible region improved the utilization of light energy,thus increasing the ability of CN/Fe-MOF to generate charge carriers.On the other hand,CN,as the active site,not only had strong adsorption capacity for CO_(2),but also retained photogenerated electrons with high reduction capacity because of S-scheme charge transfer mechanism.Hence,in the absence of any sacrificial agent and cocatalyst,the optimized 50CN/Fe-MOF obtained the highest CO yield(19.17μmol g^(–1))under UV-Vis irradiation,which was almost 10 times higher than that of CN.In situ Fourier transform infrared spectra not only revealed that the photoreduction of CO_(2) occurred at the CN,but also demonstrated that the S-scheme charge transfer mechanism enabled 50CN/Fe-MOF to have a stronger ability to generate HCOO–than CN.