期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
基于梯度加权类激活热力图的卷积神经网络故障诊断模型鲁棒性分析 被引量:4
1
作者 刘潇 沈泽俊 +2 位作者 张立新 廖成龙 张轩 《科学技术与工程》 北大核心 2023年第17期7326-7334,共9页
深度学习近年来在故障诊断领域受到广泛应用,但基于深度学习的故障诊断模型缺乏工程上的物理解释性,难以保证其故障诊断结果的稳定性。以轴承为例,建立了以小波时频图像为故障诊断依据的卷积神经网络模型(convolutional neural network,... 深度学习近年来在故障诊断领域受到广泛应用,但基于深度学习的故障诊断模型缺乏工程上的物理解释性,难以保证其故障诊断结果的稳定性。以轴承为例,建立了以小波时频图像为故障诊断依据的卷积神经网络模型(convolutional neural network,CNN),提出了一种基于梯度加权类激活热力图(gradient-weighted class activation map,Grad-CAM)的网络模型鲁棒性分析方法,并利用美国凯斯西储大学(Case Western Reserve University,CWRU)轴承数据集进行验证。首先,将故障直径轴承数据以不同方式混合并训练大、小多个模型。其次,利用Grad-CAM方法,建立时频区域与故障模式之间的联系。最后,利用其他工况下的轴承故障数据,以及含噪数据进行测试,并根据结果结合模型最注重的时频区域进行分析。结果表明,基于深度学习的轴承故障诊断模型在参数较少时更加注重低频区域,并能使其具有更好的鲁棒性。 展开更多
关键词 梯度加权激活 卷积神经网络 智能故障诊断 鲁棒性
下载PDF
基于深度学习的癫痫脑电信号分类 被引量:1
2
作者 徐晴 葛成 +2 位作者 蔡标 陆翼 常珊 《数据采集与处理》 CSCD 北大核心 2022年第4期787-797,共11页
有效地分析处理癫痫脑电信号并对其准确分类可以进一步完善癫痫检测问题。因此,各种深度学习方法逐渐应用到该问题中,如使用BiLSTM模型对癫痫脑电的一维时间序列数据进行处理。为进一步提高癫痫脑电分类的准确率,本文将癫痫脑电的一维... 有效地分析处理癫痫脑电信号并对其准确分类可以进一步完善癫痫检测问题。因此,各种深度学习方法逐渐应用到该问题中,如使用BiLSTM模型对癫痫脑电的一维时间序列数据进行处理。为进一步提高癫痫脑电分类的准确率,本文将癫痫脑电的一维时间序列数据转换为二维图像,使用EfficientNetV2模型来实现癫痫检测的二分类。同时,引入梯度加权类激活映射(Gradient⁃weighted class activation mapping,Grad⁃CAM)对二维图像分类进行可视化分析。对德国伯恩大学脑电癫痫脑电信号数据集的预处理版本进行分类实验,EfficientNetV2模型的准确率达到了98.69%,优于BiLSTM模型。结果表明,EfficientNetV2模型可以有效通过二维脑电图像实现癫痫脑电分类,而且分类准确率更高。 展开更多
关键词 癫痫 脑电信号 EfficientNetV2 BiLSTM 梯度加权激活映射
下载PDF
基于时频Grad-CAM的调制识别网络可解释分析
3
作者 梁先明 倪帆 +1 位作者 陈文洁 张家树 《西南交通大学学报》 EI CSCD 北大核心 2024年第5期1215-1224,共10页
针对时频深度学习调制识别方法存在可解释性差的问题,提出一种基于时频梯度加权类激活映射(GradCAM)的调制识别网络可解释框架.该框架通过时频Grad-CAM可视化深度模型中隐含层的关键特征,从视觉上解释网络隐含层提取的时频深度特征对于... 针对时频深度学习调制识别方法存在可解释性差的问题,提出一种基于时频梯度加权类激活映射(GradCAM)的调制识别网络可解释框架.该框架通过时频Grad-CAM可视化深度模型中隐含层的关键特征,从视觉上解释网络隐含层提取的时频深度特征对于正确与错误识别中的作用,揭示低信噪比环境下网络性能下降的内在机理,并通过量化和排序网络中每层不同卷积核的贡献值来判断网络的冗余程度.仿真实验结果验证了基于时频Grad-CAM的调制识别网络可解释性框架的有效性;可解释分析结果表明,在低信噪比环境下,网络特征提取区域有大量噪声存在,且本文所测试的调制识别网络冗余程度较为严重. 展开更多
关键词 可解释深度学习 梯度加权激活映射 调制识别 时频分析
下载PDF
基于深度学习算法联合Grad-CAM的宫腔镜子宫内膜病变诊断模型研究 被引量:1
4
作者 曹明亮 尹蜜 +9 位作者 王庆彬 朱汉峰 李星 张珺 毛林 穆雪峰 曹敏 马于涛 王健 张燕 《实用妇产科杂志》 CAS CSCD 北大核心 2024年第5期409-413,共5页
目的:探讨基于深度学习(DL)算法联合可视化技术梯度加权类激活热图(Grad-CAM)开发的宫腔镜子宫内膜病变诊断模型的有效性。方法:选择2021年6月1日至2022年12月31日在武汉大学人民医院妇科行宫腔镜检查的291例患者的303段宫腔镜视频(478... 目的:探讨基于深度学习(DL)算法联合可视化技术梯度加权类激活热图(Grad-CAM)开发的宫腔镜子宫内膜病变诊断模型的有效性。方法:选择2021年6月1日至2022年12月31日在武汉大学人民医院妇科行宫腔镜检查的291例患者的303段宫腔镜视频(4781张图像),采用权重采样的方法,将数据集划分为训练集(3703张)和测试集(1078张)。在对训练集用于模型学习与训练后,选择残差神经网络(ResNet18)和高效神经网络(EfficientNet-B0)两种模型架构对测试集分别采用五类和二类分类任务进行模型验证。以病理组织学为金标准,评估其诊断效能,从而选出最优模型,并将Grad-CAM层嵌入最优模型中,输出宫腔镜图像Grad-CAM。结果:①在五类分类任务中,EfficientNet-B0模型的准确度(93.23%)高于ResNet18模型(84.23%);EfficientNet-B0模型在诊断无不典型性子宫内膜增生、子宫内膜息肉、子宫内膜癌、子宫内膜非典型增生、黏膜下肌瘤5种疾病的曲线下面积(AUC)均稍高于ResNet18模型,两者的AUC几乎都在0.980以上。②在准确度的二类分类任务中和对特异度的评估中,两种模型相似,均在93.00%以上,而EfficientNet-B0模型敏感度(91.14%)明显优于ResNet18模型(77.22%)。③EfficientNet-B0模型联合Grad-CAM算法可识别出图像中异常区域,取活检经病理检查证实,模型输出热力图中标记区域约95%为病灶区域。结论:EfficientNet-B0模型联合Grad-CAM研发的宫腔镜诊断模型具有较高的诊断准确度、敏感度和特异度,在诊断子宫内膜病变方面具有应用价值。 展开更多
关键词 宫腔镜 子宫内膜癌 卷积神经网络 梯度加权激活热图 深度学习
下载PDF
DRSTN:深度残差软阈值化网络
5
作者 曹岩 朱真峰 《计算机科学》 CSCD 北大核心 2024年第S01期81-87,共7页
在采用深度残差等神经网络模型解决图像分类任务时,特征提取过程损失的一些重要特征会影响模型的分类性能。神经网络“端到端”的学习模式带来的黑盒问题,也会限制其在诸多领域的应用和发展。另外,神经网络模型往往需要较长的训练时间... 在采用深度残差等神经网络模型解决图像分类任务时,特征提取过程损失的一些重要特征会影响模型的分类性能。神经网络“端到端”的学习模式带来的黑盒问题,也会限制其在诸多领域的应用和发展。另外,神经网络模型往往需要较长的训练时间。为了提高深度残差网络模型的分类效果和训练效率,引入了模型迁移方法和软阈值化方法,提出了DRSTN(Deep Residual Soft Thresholding Network)网络,并对此网络结构进行微调,生成了不同版本的DRSTN网络。DRSTN网络的性能得益于3个方面的有机整合:1)通过梯度加权类激活映射(Gradients-weighted Class Activation Mapping,Grad-CAM)方法对网络的特征提取进行可视化,根据可视化结果挑选进一步优化的模型;2)基于模型迁移,研究人员不必全新地搭建模型,可以直接在已有的模型上进行优化,能够节省大量训练时间;3)软阈值化作为非线性变换层嵌入到深度残差网络体系结构中,以消除样本中不相关的特征。实验结果表明,在相同训练条件下,DRSTN_KS(3*3)_RB(2:2:2)网络在CIFAR-10数据集上的分类精度相比SKNet-18,ResNet18和ConvNeXt_tiny网络分别提高了15.5%,8.8%和10.9%;该网络也具有一定的泛化性,在MNIST和Fashion MNIST数据集上能够达到快速的迁移效果,分类精度分别达到99.06%和93.15%。 展开更多
关键词 迁移学习 残差网络 梯度加权激活映射 软阈值化方法 图像分
下载PDF
基于深度学习的DRFM信号识别
6
作者 房津辉 宋宝军 朱明哲 《现代雷达》 CSCD 北大核心 2024年第3期54-58,共5页
针对数字射频存储器(DRFM)产生信号与源信号之间无法有效区分的问题,运用基于小波变换的同步压缩变换将时域的雷达信号转换为时频图,运用深度学习强大的图像识别能力,实现了基于深度学习的源信号与DRFM信号识别,从而解决了在雷达信号处... 针对数字射频存储器(DRFM)产生信号与源信号之间无法有效区分的问题,运用基于小波变换的同步压缩变换将时域的雷达信号转换为时频图,运用深度学习强大的图像识别能力,实现了基于深度学习的源信号与DRFM信号识别,从而解决了在雷达信号处理中无法有效区分回波信号和DRFM欺骗信号以及在雷达干扰识别中基于DRFM的欺骗干扰难以识别的问题。为了验证深度学习过程的可靠性,通过神经网络可解释性算法对训练结果进行了验证和分析。实验结果表明,相比于识别原始信号,识别DRFM信号神经网络需要用到更多的特征,神经网络判断准确率达到了96.33%,识别精度良好。 展开更多
关键词 干扰识别 时频变换 梯度加权激活映射 导向反向传播 深度学习
下载PDF
深度学习在内镜下内痔诊断及危险分级中的应用 被引量:2
7
作者 陆建英 沈文娟 +6 位作者 顾莹 沈琳霞 张叶群 袁金丹 张芝芝 许春芳 朱锦舟 《中国内镜杂志》 2023年第2期1-7,共7页
目的建立内镜下内痔诊断及危险分级的深度学习模型,探讨人工智能辅助内镜下内痔诊疗的可行性。方法收集该院内镜中心的肛齿状线上倒镜图片,分为内痔组和正常组(A任务);根据LDRf分级标准,将内痔组进一步分为Rf0组、Rf1组和Rf2组(B任务)... 目的建立内镜下内痔诊断及危险分级的深度学习模型,探讨人工智能辅助内镜下内痔诊疗的可行性。方法收集该院内镜中心的肛齿状线上倒镜图片,分为内痔组和正常组(A任务);根据LDRf分级标准,将内痔组进一步分为Rf0组、Rf1组和Rf2组(B任务)。选取基于卷积神经网络(CNN)框架的Xception、ResNet和EfficientNet,以及基于Transformer框架的ViT和ConvMixer等5个神经网络,建立针对A、B两项计算机视觉任务的深度学习模型。模型评价指标包括准确率、召回率、精确度、F1值和读片时间。将深度学习模型的读片表现与两位不同年资内镜医生进行比较。结果5种深度学习模型在A与B任务测试集中皆展现出较好的准确性。其中,最优模型为ConvMixer,准确性最高(0.961和0.911),其次为EfficientNet(0.956和0.901),均优于高年资内镜医生(0.952和0.881)和低年资内镜医生(0.913和0.832)。同时,所有深度学习模型在验证集中读片用时均<10 s,速度快于内镜医生(均>300 s)。此外,笔者采用梯度加权分类激活映射(Grad-CAM)方法突出图像中对模型判断较重要的区域。结论建立的内痔诊断及危险分级的深度学习模型,其表现优于内镜医生。基于深度学习的计算机视觉模型可辅助内镜医师进行内痔诊断和分级,展现出潜在的临床应用前景。 展开更多
关键词 深度学习 内痔 消化内镜 LDRf分级 梯度加权激活映射
下载PDF
基于深度学习的内镜肠道准备评分模型的建立 被引量:2
8
作者 沈文娟 徐昶 +3 位作者 林嘉希 许春芳 陆建英 朱锦舟 《中国医疗设备》 2023年第11期11-15,共5页
目的基于深度学习算法构建内镜肠道准备评分的计算机视觉模型。方法收集苏州大学附属第一医院消化内镜中心(600张)及HyperKvasir数据库(1794张)的内镜图片共2394张,根据Boston肠道准备量表完成肠道清洁度评分(0~3分,四分类),按6∶2∶2... 目的基于深度学习算法构建内镜肠道准备评分的计算机视觉模型。方法收集苏州大学附属第一医院消化内镜中心(600张)及HyperKvasir数据库(1794张)的内镜图片共2394张,根据Boston肠道准备量表完成肠道清洁度评分(0~3分,四分类),按6∶2∶2随机分为训练集(1439张)、验证集(478张)和测试集(477张)。选取3种深度学习网络(DenseNet169、DenseNet121、EfficientNet B3),利用迁移学习方式训练肠道准备分类模型,并采用测试集的混淆矩阵等指标评价模型分类能力,与高、低年资医师的分类能力进行对比。结果成功构建3个基于深度学习的肠道准备分类模型。各模型的分类准确度均较高,平均分类准确度为0.897,近似于低年资内镜医师(0.914),低于高年资内镜医师(0.941)的分类表现。其中,DenseNet169模型表现最好,分类准确度(0.914)及平均精确度(0.892)均为最高。此外,采用梯度加权分类激活映射算法,用热力图形式对模型的分类推理进行可视化呈现。结论运用深度学习算法构建的内镜肠道准备分类模型具有可行性,可通过多中心研究扩大样本来源进一步提高模型的分类及泛化能力。 展开更多
关键词 深度学习 计算机视觉 卷积神经网络 梯度加权激活映射
下载PDF
基于ResNet的可解释性计算机视觉模型在内镜下内痔评估中的应用 被引量:1
9
作者 刘璐 林嘉希 +4 位作者 朱世祺 高静雯 刘晓琳 许春芳 朱锦舟 《现代消化及介入诊疗》 2023年第8期972-975,980,共5页
目的为克服深度学习模型黑盒不可解释的缺点,本研究旨在探讨可解释性计算机视觉模型在内镜下内痔诊断及危险分级中的应用。方法收集苏州大学附属第一医院内镜中心的肛齿状线上倒镜图片,分为内痔组和正常组;根据LDRf分级标准,对内痔组进... 目的为克服深度学习模型黑盒不可解释的缺点,本研究旨在探讨可解释性计算机视觉模型在内镜下内痔诊断及危险分级中的应用。方法收集苏州大学附属第一医院内镜中心的肛齿状线上倒镜图片,分为内痔组和正常组;根据LDRf分级标准,对内痔组进一步分级为Rf0、Rf1及Rf2三组。针对有无内痔、红色征、糜烂、血栓及活动性出血,构建基于ResNet50V2的可解释化模型,并利用江苏大学附属金坛医院内镜中心的内镜图片进行外部验证。使用准确性、敏感性、特异性以及F1值等指标对比可解释化模型与传统深度学习黑盒模型的表现,并与两位不同年资内镜医生进行比较。结果ResNet可解释化模型的准确性为0.957、敏感性为0.978、特异性为0.974,F1值为0.958,其准确性高于黑盒模型的0.938,高年资内镜医生的0.933及低年资医生的0.907。此外,模型采用Grad-CAM方法突出图像中对模型推理依据的区域。结论本研究通过收集内镜下肛齿状线上倒镜图像,构建可解释化计算机视觉模型并进行外部验证,提示该模型在内镜下内痔诊断与评级中表现优于传统深度学习黑盒模型。该模型在未来临床内镜诊疗中具有良好应用前景。 展开更多
关键词 可解释性 深度学习 内痔 消化内镜 LDRf分级 梯度加权激活映射
下载PDF
基于声成像与卷积神经网络的轴承故障诊断方法及其可解释性研究 被引量:11
10
作者 王冉 石如玉 +2 位作者 胡升涵 鲁文波 胡雄 《振动与冲击》 EI CSCD 北大核心 2022年第16期224-231,共8页
常用的振动诊断技术一般采用接触式测量,在测量受限的场合具有一定的局限性。该研究提出一种具有非接触测量优势的基于声成像与卷积神经网络的滚动轴承声学故障诊断方法。首先,利用传声器阵列获取滚动轴承辐射的空间声场;然后,用波叠加... 常用的振动诊断技术一般采用接触式测量,在测量受限的场合具有一定的局限性。该研究提出一种具有非接触测量优势的基于声成像与卷积神经网络的滚动轴承声学故障诊断方法。首先,利用传声器阵列获取滚动轴承辐射的空间声场;然后,用波叠加法进行声成像,重建后的声像能够描述声场的空间分布信息;最后,建立卷积神经网络(convolutional neural network,CNN),使用不同轴承运行状态下的声像样本对CNN模型进行训练用于故障诊断。同时,针对深度学习模型的诊断结果缺乏可解释性的问题,采用梯度加权类激活图(gradient-weighted class activation map,Grad-CAM)算法对卷积神经网络在基于声像的轴承故障诊断中的可解释性进行了研究。轴承试验台的声阵列数据验证了所提方法的有效性及优越性。 展开更多
关键词 声成像 故障诊断 卷积神经网络(CNN) 波叠加法 梯度加权激活图(Grad-CAM)
下载PDF
一种端到端弱监督学习网络模型的中国画情感识别 被引量:4
11
作者 卢克斌 殷守林 《哈尔滨理工大学学报》 CAS 北大核心 2022年第1期69-78,共10页
情感识别是计算机视觉研究中的一个热点,研究中国画表现的情感对于作品鉴赏工作具有重要意义。为了提高识别性能,针对传统卷积神经网络用于提取中国画的局部区域信息会导致有效信息丢失的问题,文章提出一种基于端到端弱监督学习网络方... 情感识别是计算机视觉研究中的一个热点,研究中国画表现的情感对于作品鉴赏工作具有重要意义。为了提高识别性能,针对传统卷积神经网络用于提取中国画的局部区域信息会导致有效信息丢失的问题,文章提出一种基于端到端弱监督学习网络方法对中国画情感进行识别。提出的学习网络由2个分类模块和1个情感强度预测模块组成。首先,在改进特征金字塔网络的基础上构建强度预测通道,提取多层次特征。使用基于梯度的类激活映射技术从第一个分类通道生成伪强度映射图,以指导提出的网络进行情感强度学习。将预测的强度图输入到第二分类通道中进行最终的中国画情感识别。最后,在公开数据集上对提出的方法进行了验证,实验结果表明,所提出的网络就混淆矩阵、平均分类准确率、平均情感识别率分别提高了10%,15%和13%。 展开更多
关键词 中国画情感识别 端到端弱监督学习网络 情感强度图 基于梯度激活映射
下载PDF
基于迁移学习和模型融合的龋齿检测 被引量:1
12
作者 张蓓蕾 毕锦桐 +2 位作者 郭宇佳 刘玉良 胡欣 《天津科技大学学报》 CAS 2023年第5期49-56,共8页
龋齿是口腔医学领域的常见病和多发病,及时检测龋齿可以防止龋齿进一步恶化。智能医学辅助诊断的发展使计算机辅助医生进行龋齿筛查成为可能。本文提出一种基于迁移学习和模型融合技术的龋齿检测网络(MDfuse Net),该网络使用改进的Dense... 龋齿是口腔医学领域的常见病和多发病,及时检测龋齿可以防止龋齿进一步恶化。智能医学辅助诊断的发展使计算机辅助医生进行龋齿筛查成为可能。本文提出一种基于迁移学习和模型融合技术的龋齿检测网络(MDfuse Net),该网络使用改进的Dense Net121和MobileNetV2作为分支特征提取网络,利用模型融合技术将分支特征提取网络提取到的特征融合在一起,使网络可以学习到更多的图像特征,提高检测准确度。实验将梯度加权类激活图(Grad-CAM)技术与MDfuse Net结合在一起进行特征可视化,生成网络关注区域,确定病灶发生点。共收集了3250张临床根尖周X线片图像,用于构建和检测龋齿分类模型,模型准确率达到97.08%,性能优于子特征提取模型。实验结果表明,MDfuseNet可以结合分支特征提取网络优势,有效地对根尖周X线片进行学习,在帮助医生进行龋齿辅助诊断上有着巨大的潜力。 展开更多
关键词 龋齿 根尖周X线片 迁移学习 模型融合 梯度加权激活 辅助诊断
下载PDF
基于可解释卷积神经网络的胚胎血管新生时间模式研究
13
作者 吕雪倩 赵沈佳 +3 位作者 李佩伦 方路平 宁钢民 潘清 《中国生物医学工程学报》 CAS CSCD 北大核心 2020年第5期524-531,共8页
理解血管网络新生的时间模式,有助于生物体发育机制研究和肿瘤等疾病的生理病理研究。提出以可解释卷积神经网络(CNN)研究鸡胚胎卵黄膜的血管新生时间模式的方法。基于CNN建立受精3 d后(3dpf)和4 d后(4dpf)的鸡胚胎血管网络图像的分类模... 理解血管网络新生的时间模式,有助于生物体发育机制研究和肿瘤等疾病的生理病理研究。提出以可解释卷积神经网络(CNN)研究鸡胚胎卵黄膜的血管新生时间模式的方法。基于CNN建立受精3 d后(3dpf)和4 d后(4dpf)的鸡胚胎血管网络图像的分类模型,以梯度加权的类激活映射(Grad-CAM)技术解释发育过程中血管网络形态拓扑的变化模式,并以此分类模型分析3dpf^4dpf之间血管新生的时间特性。实验共计观察17枚受精卵,结果显示最优模型区分3dpf与4dpf的血管图像的准确率达到98.62%。通过Grad-CAM技术对不同时期血管图像的特征进行可视化,发现3dpf^4dpf的发育过程主要表现为毛细血管网的生长发育。这些鸡胚胎卵黄膜在3dpf^4dpf时间段内,前12 h血管新生较为剧烈,随后趋于平稳。这些结果可为血管新生研究提供新的技术手段,并辅助血管新生机制、肿瘤发病机理和器官衰老过程等的相关研究。 展开更多
关键词 血管新生 卷积神经网络 鸡胚胎卵黄膜 梯度加权激活映射
下载PDF
深度学习的可解释性研究综述 被引量:10
14
作者 李凌敏 侯梦然 +1 位作者 陈琨 刘军民 《计算机应用》 CSCD 北大核心 2022年第12期3639-3650,共12页
近年来,深度学习在很多领域得到广泛应用;然而,由于深度神经网络模型的高度非线性操作,导致其可解释性较差,并常常被称为“黑箱”模型,无法应用于一些对性能要求较高的关键领域;因此,对深度学习的可解释性开展研究是很有必要的。首先,... 近年来,深度学习在很多领域得到广泛应用;然而,由于深度神经网络模型的高度非线性操作,导致其可解释性较差,并常常被称为“黑箱”模型,无法应用于一些对性能要求较高的关键领域;因此,对深度学习的可解释性开展研究是很有必要的。首先,简单介绍了深度学习;然后,围绕深度学习的可解释性,从隐层可视化、类激活映射(CAM)、敏感性分析、频率原理、鲁棒性扰动测试、信息论、可解释模块和优化方法这8个方面对现有研究工作进行分析;同时,展示了深度学习在网络安全、推荐系统、医疗和社交网络领域的应用;最后,讨论了深度学习可解释性研究存在的问题及未来的发展方向。 展开更多
关键词 深度学习 可解释性 可视化 激活映射 频率原理 可解释模块 信息论
下载PDF
基于脑电空间域表征可视化的情感识别研究
15
作者 王竞茜 苗敏敏 +1 位作者 徐宝国 胡文军 《传感技术学报》 CAS CSCD 北大核心 2023年第9期1385-1394,共10页
鉴于情感脑电蕴含丰富的空间模式特征,提出一种基于二维空间域表征可视化的情感识别方法。首先,提取多通道脑电Gamma频段的微分熵(Differential Entropy,DE)特征并根据导联位置映射至9×9的二维空间进行拓扑重构,使用三次插值方法... 鉴于情感脑电蕴含丰富的空间模式特征,提出一种基于二维空间域表征可视化的情感识别方法。首先,提取多通道脑电Gamma频段的微分熵(Differential Entropy,DE)特征并根据导联位置映射至9×9的二维空间进行拓扑重构,使用三次插值方法进一步提高空间域特征图的分辨率;然后,针对性地设计了一种深度残差网络(Residual Network,ResNet)模型作为情感脑电解码器对情感脑电信号(Electroencephalogram,EEG)进行深层抽象特征的自动提取和端到端分类;最后,通过梯度加权类激活映射(Gradient-weighted Class Activation Mapping,Grad-CAM)方法对输入特征图进行可解释性分析,依据热力图分布定位对特定情感状态识别具有较大贡献的空间脑区。在SEED数据集上进行了相关情感识别实验,三种情感类别分类平均准确率为94.88%,达到了较先进的性能。 展开更多
关键词 脑机接口 情感识别 深度残差网络 梯度加权激活映射
下载PDF
基于CNN的键盘电磁信息泄漏识别检测方法
16
作者 彭一华 张杰敏 +1 位作者 茅剑 李朝锦 《太赫兹科学与电子信息学报》 2023年第5期645-651,共7页
针对键盘电磁信息安全问题,分析了PS/2键盘的工作原理以及信号特征,提出一种基于深度学习的检测方法。该方法针对键盘设备的电磁泄漏信号特征,对卷积神经网络(CNN)结构进行了适应性调整;结合改进的梯度加权类激活映射方法,实现了对键盘... 针对键盘电磁信息安全问题,分析了PS/2键盘的工作原理以及信号特征,提出一种基于深度学习的检测方法。该方法针对键盘设备的电磁泄漏信号特征,对卷积神经网络(CNN)结构进行了适应性调整;结合改进的梯度加权类激活映射方法,实现了对键盘电磁信息的智能识别和精准定位。对4个按键的电磁信号进行测试,分类准确率达到了98%;在噪声环境下的分类准确率也达到了81%。将梯度加权类激活映射方法及其改进方法对键盘电磁信息的定位效果进行了对比,实验结果证明改进后的方法定位效果更佳。 展开更多
关键词 信息安全 电磁信息检测 深度学习 梯度加权激活映射
下载PDF
基于Sigmoid的轴承多任务故障诊断 被引量:1
17
作者 吴春志 苑改红 +2 位作者 孟凡杰 张宝月 焦志鑫 《设备管理与维修》 2023年第15期186-190,共5页
深度学习方法在旋转机械的故障诊断领域应用广泛,效果良好。但值得注意的是,大部分模型局限于分类几种故障,是一种简单的单任务分类。提出一种基于卷积神经网络的多任务分类模型,同时诊断故障类型和程度。采用Grad-CAM(Gradient-weighte... 深度学习方法在旋转机械的故障诊断领域应用广泛,效果良好。但值得注意的是,大部分模型局限于分类几种故障,是一种简单的单任务分类。提出一种基于卷积神经网络的多任务分类模型,同时诊断故障类型和程度。采用Grad-CAM(Gradient-weighted Class Activation Mapping,梯度类激活映射)方法可视化深度模型中隐含层的关注信号的特征,定位模型感兴趣的信号段,从视觉上解释深度学习模型区分类别的关键特征。采用公开的轴承数据集验证方法的有效性,为进一步探讨深度学习模型的可解释性提供新思路。 展开更多
关键词 卷积神经网络 轴承 梯度加权激活映射
下载PDF
基于深度学习的t-fMRI脑状态解码
18
作者 付佳俊 卢梅丽 +2 位作者 曹一凡 郭兆桦 高资成 《天津职业技术师范大学学报》 2022年第4期45-50,共6页
针对传统方法在解码大脑状态中由特征提取带来的可重复性差和耗时问题,采用基于3D卷积神经网络(3D-CNN)模型对任务态功能磁共振成像(t-fMRI)进行分类,从不同数据粒度分别采用梯度加权类激活映射(GradCAM)算法和导向梯度加权类激活映射(G... 针对传统方法在解码大脑状态中由特征提取带来的可重复性差和耗时问题,采用基于3D卷积神经网络(3D-CNN)模型对任务态功能磁共振成像(t-fMRI)进行分类,从不同数据粒度分别采用梯度加权类激活映射(GradCAM)算法和导向梯度加权类激活映射(Guided Grad-CAM)算法探索分类结果与大脑不同脑区的功能相关性。采用4种不同t-f MRI数据验证算法的有效性,结果显示:3D-CNN分类模型准确度达97.8%,特征可视化能够准确映射到分类结果对应的功能脑区,且可有效解码大脑任务状态。 展开更多
关键词 脑状态解码 3D卷积神经网络(3D-CNN) 功能磁共振成像 可视化 梯度加权激活映射 导向梯度加权激活映射
下载PDF
基于高光谱成像技术的陈皮年份快速鉴别
19
作者 刘诚 赵路路 +2 位作者 周松斌 刘忆森 王庭有 《食品工业科技》 CAS 2024年第24期243-251,共9页
陈皮具有较好的经济价值与药用价值,但目前市场上假冒伪劣、以次充好的现象严重。尤其是陈皮陈化年份作为衡量陈皮品质的重要指标,采用人工检测方法准确率与效率较低。为此,本文采用高光谱成像技术结合深度学习方法,建立陈皮陈化年份的... 陈皮具有较好的经济价值与药用价值,但目前市场上假冒伪劣、以次充好的现象严重。尤其是陈皮陈化年份作为衡量陈皮品质的重要指标,采用人工检测方法准确率与效率较低。为此,本文采用高光谱成像技术结合深度学习方法,建立陈皮陈化年份的快速无损鉴别方法。采集4类不同陈化年份的480个陈皮样本的近红外高光谱数据(波长范围为935.61~1720.23 nm),并采用轻量化卷积网络1D-Rep网络建立分类模型。在此网络基础上,提出基于多层梯度加权类激活映射(M-Grad-CAM)的特征波段选择方法,并建立特征波段分类模型。该方法综合加权多个Rep-block层的梯度生成波段重要性曲线,从而实现融合波段领域相关性与远程相关性的波段重要性指示。为验证方法有效性,采用基于偏最小二乘判别分析(PLS-DA)、随机森林(RF)、支持向量机(SVM)等机器学习方法获得的特征波段作为对比方法。结果表明,1D-Rep全波段光谱模型准确率达到98.55%。在特征波段建模的情况下,采用M-Grad-CAM选取特征波长,基于前9个特征波段建立分类模型准确率可超过90%,在20个特征波段时达到96.82%,准确率显著优于其他对比模型。本研究采用高光谱成像技术,可有效对不同年份的陈皮进行无损鉴别,并为开发便携检测仪器提供方法和理论依据。 展开更多
关键词 高光谱成像 陈皮 陈化年份 多层梯度加权类激活映射 特征波段
下载PDF
供电系统中的数据挖掘应用 被引量:1
20
作者 安德洪 沈菲 何振雄 《数量经济技术经济研究》 CSSCI 北大核心 2003年第6期131-134,共4页
人工神经网络是数据挖掘的常用方法,对于大量的数据,传统BP网络的收敛性较差,本文采用共轭梯度法改善其收敛性,使用遗传算法对其网络结构进行优化,并且对其隐层结点激活值聚类以压缩信息,最终从中提取规则,从而达到利用改进的神经网络... 人工神经网络是数据挖掘的常用方法,对于大量的数据,传统BP网络的收敛性较差,本文采用共轭梯度法改善其收敛性,使用遗传算法对其网络结构进行优化,并且对其隐层结点激活值聚类以压缩信息,最终从中提取规则,从而达到利用改进的神经网络从供电系统运营数据中提取知识的目的。 展开更多
关键词 供电系统 数据挖掘 人工神经网络 共轭梯度 遗传算法 结点激活 规则提取
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部