期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
保留细节特征的图像任意风格迁移 被引量:1
1
作者 蒋亨畅 张笃振 《计算机系统应用》 2024年第3期118-125,共8页
一些主流的图像任意风格迁移模型在保持内容图像的显著性信息和细节特征方面依然有局限性,生成的图像往往具有内容模糊、细节失真等问题.针对以上问题,本文提出一种可以有效保留内容图像细节特征的图像任意风格迁移模型.模型包括灵活地... 一些主流的图像任意风格迁移模型在保持内容图像的显著性信息和细节特征方面依然有局限性,生成的图像往往具有内容模糊、细节失真等问题.针对以上问题,本文提出一种可以有效保留内容图像细节特征的图像任意风格迁移模型.模型包括灵活地融合从编码器提取到的浅层至深层的多层级图像特征;提出一种新的特征融合模块,该模块可以高质量地融合内容特征和风格特征.此外,还提出一个新的损失函数,该损失函数可以很好地保持内容和风格全局结构,消除伪影.实验结果表明,本文提出的图像任意风格迁移模型可以很好地平衡风格和内容,保留内容图像完整的语义信息和细节特征,生成视觉效果更好的风格化图像. 展开更多
关键词 图像任意风格迁移 保留细节特征 多层级图像特征 特征融合 损失函数 注意力机制
下载PDF
基于多层特征描述及关系学习的智能图像情感识别 被引量:4
2
作者 杨文武 普园媛 +3 位作者 赵征鹏 徐丹 钱文华 阿曼 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第5期40-48,共9页
针对缺少标记的情感图像数据会严重影响卷积神经网络(convolutional neural network,CNN)性能的问题,利用半监督动态学习的方法建立了大规模的图像情感数据集--Large-scale deep emotion(LSDE)数据集。为了有效弥补图像特征和人类情感... 针对缺少标记的情感图像数据会严重影响卷积神经网络(convolutional neural network,CNN)性能的问题,利用半监督动态学习的方法建立了大规模的图像情感数据集--Large-scale deep emotion(LSDE)数据集。为了有效弥补图像特征和人类情感之间的差异,先将图像目标与背景进行分离,之后使用关系学习网络获得基于前景和背景图像的不同层级间的关系。在LSDE数据集、Twitter2数据集以及ArtPhoto数据集上的实验结果表明,关系学习网络能够有效地提取图像的多层级特征并学习到不同层级特征之间的关系,弥补图像特征和人类情感的差异,提高图像情感识别的准确率。 展开更多
关键词 图像情感识别 多层级图像特征 关系学习网络 CNN 人工智能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部