VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a se...VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a series of VAlN/Si_(3)N_(4) nano-multilayer coatings with varied Si_(3)N_(4) layer thicknesses were prepared by reactive sputtering method.The microstructure and mechanical properties of the coatings were both investigated.It is revealed that Si_(3)N_(4) with a shallow thickness(~0.4 nm)was crystallized and grown coherently with VAlN,showing a remarkable increase in hardness compared to VAlN monolayer coating.The hardness of coherently VAlN/Si_(3)N_(4) nano-multilayer coatings reached to 48.7 GPa.With further increase of Si_(3)N_(4) layer thickness,the coherent growth of nano-multilayers was terminated,showing amorphous structure formed in nano-multilayers and the hardness was declined.On the other hand,when Si_(3)N_(4) layer thickness was 0.4 nm,the friction coefficient of VAlN/Si_(3)N_(4) nano-multilayer coating was almost equal to that of VAlN monolayer coating,which was attributed to the crystallization of Si_(3)N_(4) and the produced coherent interfaces between VAlN and Si_(3)N_(4) for the hardening effect of nano-multilayer coatings.Upon further increase of Si_(3)N_(4) layer thickness,pronounced improvement of friction coefficient in VAlN/Si_(3)N_(4) nano-multilayer coating was observed.展开更多
The electronic structure, atomic geometry and energetic properties of ceramic nanomultilayer have been systematically studied with first principles density functional theory calculations based on the generalized gradi...The electronic structure, atomic geometry and energetic properties of ceramic nanomultilayer have been systematically studied with first principles density functional theory calculations based on the generalized gradient approximations. It is found that the interface structure and adhesion, which determine the mechanical and thermal properties, are sensitive to the surface mor- phology. We also provide an analysis of adhesion of ZrO2/A1203 interface as a function of thickness of each layer. With the in- crease of ZrO2 thickness, both covalence and ionicity of the interfacial bonds are enhanced, which results in more strongly coupled interfaces while the ionic interaction decreases for thicker Al2O3 layers, which results in weakly coupled interfaces. A first-principles calculation method has been proposed to design nanomultilayer materials to achieve the demanded adhesion.展开更多
基金Project(51201187)supported by the National Natural Science Foundation of China。
文摘VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a series of VAlN/Si_(3)N_(4) nano-multilayer coatings with varied Si_(3)N_(4) layer thicknesses were prepared by reactive sputtering method.The microstructure and mechanical properties of the coatings were both investigated.It is revealed that Si_(3)N_(4) with a shallow thickness(~0.4 nm)was crystallized and grown coherently with VAlN,showing a remarkable increase in hardness compared to VAlN monolayer coating.The hardness of coherently VAlN/Si_(3)N_(4) nano-multilayer coatings reached to 48.7 GPa.With further increase of Si_(3)N_(4) layer thickness,the coherent growth of nano-multilayers was terminated,showing amorphous structure formed in nano-multilayers and the hardness was declined.On the other hand,when Si_(3)N_(4) layer thickness was 0.4 nm,the friction coefficient of VAlN/Si_(3)N_(4) nano-multilayer coating was almost equal to that of VAlN monolayer coating,which was attributed to the crystallization of Si_(3)N_(4) and the produced coherent interfaces between VAlN and Si_(3)N_(4) for the hardening effect of nano-multilayer coatings.Upon further increase of Si_(3)N_(4) layer thickness,pronounced improvement of friction coefficient in VAlN/Si_(3)N_(4) nano-multilayer coating was observed.
文摘The electronic structure, atomic geometry and energetic properties of ceramic nanomultilayer have been systematically studied with first principles density functional theory calculations based on the generalized gradient approximations. It is found that the interface structure and adhesion, which determine the mechanical and thermal properties, are sensitive to the surface mor- phology. We also provide an analysis of adhesion of ZrO2/A1203 interface as a function of thickness of each layer. With the in- crease of ZrO2 thickness, both covalence and ionicity of the interfacial bonds are enhanced, which results in more strongly coupled interfaces while the ionic interaction decreases for thicker Al2O3 layers, which results in weakly coupled interfaces. A first-principles calculation method has been proposed to design nanomultilayer materials to achieve the demanded adhesion.