期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多层记忆增强生成对抗网络二次预测的视频异常检测方法
被引量:
1
1
作者
曾静
李莹
+1 位作者
戚小莎
吉根林
《应用科学学报》
CAS
CSCD
北大核心
2023年第1期80-94,共15页
为了提高视频异常检测的准确率,提出了一种基于多层记忆增强生成对抗网络二次预测的视频异常检测方法。首先利用目标检测提取时空立方体,并将其输入自编码器中得到预测帧;其次将预测帧的表观特征和对应真实帧的光流特征进行融合,形成融...
为了提高视频异常检测的准确率,提出了一种基于多层记忆增强生成对抗网络二次预测的视频异常检测方法。首先利用目标检测提取时空立方体,并将其输入自编码器中得到预测帧;其次将预测帧的表观特征和对应真实帧的光流特征进行融合,形成融合特征;最后利用多层记忆增强生成对抗网络二次预测未来帧,以便学习不同层次特征的正常模式并捕获上下文的语义信息。在UCSD Ped2和CUHK Avenue数据集上进行的实验结果表明:所提出的方法与其他视频异常检测方法相比,可有效提高视频异常检测的性能,使帧级别AUC分别达到99.57%和91.59%。
展开更多
关键词
视频异常检测
多层记忆增强
生成对抗网络
未来帧预测
深度学习
下载PDF
职称材料
题名
多层记忆增强生成对抗网络二次预测的视频异常检测方法
被引量:
1
1
作者
曾静
李莹
戚小莎
吉根林
机构
南京师范大学计算机与电子信息学院/人工智能学院
南京师范大学数学科学学院
出处
《应用科学学报》
CAS
CSCD
北大核心
2023年第1期80-94,共15页
基金
国家自然科学基金(No.41971343,No.62102186)资助。
文摘
为了提高视频异常检测的准确率,提出了一种基于多层记忆增强生成对抗网络二次预测的视频异常检测方法。首先利用目标检测提取时空立方体,并将其输入自编码器中得到预测帧;其次将预测帧的表观特征和对应真实帧的光流特征进行融合,形成融合特征;最后利用多层记忆增强生成对抗网络二次预测未来帧,以便学习不同层次特征的正常模式并捕获上下文的语义信息。在UCSD Ped2和CUHK Avenue数据集上进行的实验结果表明:所提出的方法与其他视频异常检测方法相比,可有效提高视频异常检测的性能,使帧级别AUC分别达到99.57%和91.59%。
关键词
视频异常检测
多层记忆增强
生成对抗网络
未来帧预测
深度学习
Keywords
video anomaly detection
multi-layer memory enhancement
generative adver-sarial network
future frame prediction
deep learning
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多层记忆增强生成对抗网络二次预测的视频异常检测方法
曾静
李莹
戚小莎
吉根林
《应用科学学报》
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部