期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多层采动条件下采空区覆岩残余裂隙发育规律的实验研究 被引量:10
1
作者 张永波 张利民 《工程地质学报》 CSCD 北大核心 2010年第4期554-558,共5页
采空区残余裂隙的发育情况是采空区充填注浆设计需要考虑的重要因素。本文采用相似材料模拟实验的方法,探讨多层采动条件下采空区覆岩残余裂隙的分布规律和发育程度。研究结果表明:开采结束后采空区残余裂隙在剖面上具有明显的分区性,... 采空区残余裂隙的发育情况是采空区充填注浆设计需要考虑的重要因素。本文采用相似材料模拟实验的方法,探讨多层采动条件下采空区覆岩残余裂隙的分布规律和发育程度。研究结果表明:开采结束后采空区残余裂隙在剖面上具有明显的分区性,从采空区两侧到中间可划分为残余裂隙发育区、裂隙压密区和地表张拉裂隙区;残余裂隙发育区的残余裂隙率一般介于19.54%~45.27%之间,裂隙压密区的残余裂隙率介于9.28%~19.33%之间;离层裂隙发育高度是受采宽和累计采厚综合影响的结果。研究成果对于老采空区建筑地基的稳定性评价、采空区处治工程范围与深度的确定、注浆孔的合理布置、单孔注浆量的合理计算等都具有重要的理论研究价值和实际指导意义。 展开更多
关键词 多层采动 空区 残余裂隙
下载PDF
Experimental research on overlying strata movement and fracture evolution in pillarless stress-relief mining 被引量:22
2
作者 Junhua Xue Hanpeng Wang +3 位作者 Wei Zhou Bo Ren Changrui Duan Dongsheng Deng 《International Journal of Coal Science & Technology》 EI 2015年第1期38-45,共8页
In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the ... In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the risk of high gas emission and outbursts of coal and gas. A key to success with this mining sequence is to gain a detailed understanding of the movement and fracture evolution of the overlying and underlying strata after the protective seam in extracted. In Zhuji mine, the No. 11-2 seam is extracted as a protective seam with the pillarless mining method by retaining goal-side roadways prior to its overlying No. 13-1 seam. An investigation has been undertaken in the panel 1111 (1) of Zhuji mine to physically simulate the movement and fracture evolution of the overlying strata alter the No. 1 I-2 seam is extracted. In the physical simulation, the displacement, strain, and deformation and failure process of the model for simulation were acquired with various means such as grating displacement meter, strain gauges, and digital photography. The simulation result shows that: (1) Initial caving interval of the immediate roof was 21.6 m, the first weighting interval was 23.5-37.3 m with the average interval of 33.5 m, and the periodic weighting interval of the main roof was in a range of 8.2-20.55 m and averaged at 15.2 m. (2) The maximum height of the caving zone after the extraction of No. 11-2 seam was 8.0 m, which was 4 times of the seam mining height and the internal strata of the caving zone collapsed irregularly. The mining-induced fractures developed 8-30 m above the mined No. 11-2 seam, which was 7.525 times of the seam mining height, the fracture zone was about 65° upward from the seam open-off cut toward the goaf, the height of longitudinal joint growth was 4-20 times of the mining seam height, and the height of lateral joint growth was 20-25 times of the mining seam height. (3) The "arch-in-arch" mechanical structure of the internal goaf was bounded by an expansion angle of broken strata in the lateral direction of the retained goaf-side roadway. The spatial and temporal evolution regularities of over- burden's displacement field and stress field, dynamic development process and distribution of fracture field were analyzed. Based on the simulation results, it is recommended that several goaf drainage methods, i.e. gas drainage with buried pipes in goaf, surface goaf gas drainage, and cross-measure boreholes, should be implemented to ensure the safe mining of the panel 1111 (1). 展开更多
关键词 Low-permeability coal seam Pillarless stress-relief mining Overburden movement Fracture evolution Physical simulation
下载PDF
Modeling and simulation of strata movement for protective seam mining with large interburden
3
作者 SONG Chang-sheng LI De-hai LI Hua-min 《Journal of Coal Science & Engineering(China)》 2009年第1期46-49,共4页
Based on simulated material scale modeling and numerical simulation, the protective seam mining method was conducted at one coal mine. After extracting the No.15seam, the overlying strata movement and the deformation ... Based on simulated material scale modeling and numerical simulation, the protective seam mining method was conducted at one coal mine. After extracting the No.15seam, the overlying strata movement and the deformation of the No.9-10 protected seamwere studied. The experiment results show that it is feasible to destress the protectedseams with large interburden thickness. When the face had advanced 200 m from thesetup room, the No.9-10 seam was fully destressed, resulting in easy gas drainage in thedestressed zone. Recommendations on mining sequence of multiple seams mining in thesame coal areas were made. 展开更多
关键词 large interburden protective seam mining strata movement destressed
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部