Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning el...Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.展开更多
Interfacial bonding in as deposited and annealed Co/C soft X ray multilayer structures is investigated by X ray photo electron spectroscopy (XPS).It is found that there is interdiffusion between cobalt and carbon ...Interfacial bonding in as deposited and annealed Co/C soft X ray multilayer structures is investigated by X ray photo electron spectroscopy (XPS).It is found that there is interdiffusion between cobalt and carbon in the as deposited Co/C multilayers,and this is confirmed by structure characterization using low angle X ray diffraction (LAXD).The calculation of the chemical shifts in Co C system based on Miedemas macroscopic atom model suggests that it is impossible to detect the chemical shift experimentally in the Co C compound,which is consistent with the XPS results.The presence of metallic carbide bonding is evidenced through the nature of the carbon bonding in survey taken at Co C and C Co interfaces of annealed samples.Our results also indicate that XPS is a direct method to probe the chemical bonding at the interfaces.展开更多
Automotive surface coating manufacturing is one of the most sophisticated and expensive steps in automotive assembly. This step involves generating multiple thin layers of polymeric coatings on the vehicle surface thr...Automotive surface coating manufacturing is one of the most sophisticated and expensive steps in automotive assembly. This step involves generating multiple thin layers of polymeric coatings on the vehicle surface through paint spray and curing in a multistage, dynamically changing environment. Traditionally, the quality control is solely post-process inspection based, and process operational adjustment is only experience based, thus the manufacturing may not be (highly) sustainable. In this article, a multiscale system modeling and analysis methodology is introduced for achieving a sustainable application of polymeric materials through paint spray and film curing in automotive surface coating manufacturing. By this methodology, the correlations among paint material, application processes and coating performance can be identified. The model-based analysis allows a comprehensive and deep study of the dynamic behaviors of the material, process, and product in a wide spectrum of length and time. Case studies illustrate the efficacy of the methodology for sustainable manufacturing.展开更多
基金Project(2011CB605804) supported by the National Basic Research Development Program of ChinaProject(2015JJ3167) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013M531810) supported by the Postdoctoral Science Foundation of China
文摘Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.
文摘Interfacial bonding in as deposited and annealed Co/C soft X ray multilayer structures is investigated by X ray photo electron spectroscopy (XPS).It is found that there is interdiffusion between cobalt and carbon in the as deposited Co/C multilayers,and this is confirmed by structure characterization using low angle X ray diffraction (LAXD).The calculation of the chemical shifts in Co C system based on Miedemas macroscopic atom model suggests that it is impossible to detect the chemical shift experimentally in the Co C compound,which is consistent with the XPS results.The presence of metallic carbide bonding is evidenced through the nature of the carbon bonding in survey taken at Co C and C Co interfaces of annealed samples.Our results also indicate that XPS is a direct method to probe the chemical bonding at the interfaces.
基金Supported in part by US NSF (CBET 0647113 and 0730383, CMMI 0700178, and DUE 0736739)the Institute of Manufacturing Research of Wayne State University.
文摘Automotive surface coating manufacturing is one of the most sophisticated and expensive steps in automotive assembly. This step involves generating multiple thin layers of polymeric coatings on the vehicle surface through paint spray and curing in a multistage, dynamically changing environment. Traditionally, the quality control is solely post-process inspection based, and process operational adjustment is only experience based, thus the manufacturing may not be (highly) sustainable. In this article, a multiscale system modeling and analysis methodology is introduced for achieving a sustainable application of polymeric materials through paint spray and film curing in automotive surface coating manufacturing. By this methodology, the correlations among paint material, application processes and coating performance can be identified. The model-based analysis allows a comprehensive and deep study of the dynamic behaviors of the material, process, and product in a wide spectrum of length and time. Case studies illustrate the efficacy of the methodology for sustainable manufacturing.