Considering the effect of temperature and process variations, the inputs and clock signals combination sleep state dependent leakage current characteristics is analyzed and the optimal sleep state is examined in sub-6...Considering the effect of temperature and process variations, the inputs and clock signals combination sleep state dependent leakage current characteristics is analyzed and the optimal sleep state is examined in sub-65nm dual threshold voltage (V1) footed domino circuits. HSPICE simulations based on 65nm and 45nm BSIM4 models show that the proposed CLIL state (the clock signal and inputs are all low) is the optimal state to reduce the leakage current of the high fan-in footed domino circuits at high temperature and almost all footed domino circuits at room temperature, as compared to the conventional CHIL state (the clock signal is high and inputs are all low) and the CHIH state (the clock signal and inputs are all high). Further, the influence of the process variations on the leakage current characteristics of the dual V1 footed domino circuits is evaluated. At last, temperature and process variation aware new low leakage current setup guidelines are provided.展开更多
基金supported by the2008Science and Research Foundation of Hebei Education Depart ment(No.2008308)~~
文摘Considering the effect of temperature and process variations, the inputs and clock signals combination sleep state dependent leakage current characteristics is analyzed and the optimal sleep state is examined in sub-65nm dual threshold voltage (V1) footed domino circuits. HSPICE simulations based on 65nm and 45nm BSIM4 models show that the proposed CLIL state (the clock signal and inputs are all low) is the optimal state to reduce the leakage current of the high fan-in footed domino circuits at high temperature and almost all footed domino circuits at room temperature, as compared to the conventional CHIL state (the clock signal is high and inputs are all low) and the CHIH state (the clock signal and inputs are all high). Further, the influence of the process variations on the leakage current characteristics of the dual V1 footed domino circuits is evaluated. At last, temperature and process variation aware new low leakage current setup guidelines are provided.