A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leach...An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leaching time and temperature were employed as inputs to the network; the output of the network was the percentage of the ferric extraction iron from RGC. The multilayered feed-forward networks were trained by 33 sets of input-output patterns using a back propagation algorithm; a three-layer network with 8 neurons in the hidden layer gave optimal results. The model gave good predictions of high correlation coefficient (R2=0.966). The predictions by ANN are more accurate when compared with conventional multivariate regression analysis (MVRA). In addition, calculation with ANN model indicates that temperature is the predominant parameter and ozone concentration is the lesser influential parameter in the pre-oxidation process of refractory gold ore. The ANN neural network model accurately estimates the ferric extraction during pretreatment process of RGC in gold smelter plants and can be used to optimize the process parameters.展开更多
The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil...The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.展开更多
The authors propose a new persistent transmission based real time Ethernet MAC protocol that provides a predictable upper bound for the delivery delay of real time frames. Moreover, it is compatible with the protocol ...The authors propose a new persistent transmission based real time Ethernet MAC protocol that provides a predictable upper bound for the delivery delay of real time frames. Moreover, it is compatible with the protocol used by the existing Ethernet controllers for conventional datagram traffic and thus standard Ethernet stations can be used in the system without any modification. The paper describes the protocol in detail and analyses the maximum delivery delay for real time traffic and the efficiency of the channel.展开更多
A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is gr...A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is grounded on a Network Utility Maxmization (NUM) formulation which can be decomposed into a rate control problem and a packet scheduling problem. The solutions to these two problems perform resource allocation among different flows. Simulations demonstrate that TCP-I2NC results in a significant throughput gain and a small delay jitter. Network resource is fairly allocated via the solution to the NUM problem and the whole system also runs stably. Moreover, TCP-I2NC is compatible with traditional TCP variants.展开更多
The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boul...The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine,Iran was predicted via multiple regression method and artificial neural networks.Results of 33 blasts in the mine were collected for modeling.Input variables were:joints spacing,density and uniaxial compressive strength of the intact rock,burden,spacing,stemming,bench height to burden ratio,and specific charge.The dependent variable was ratio of boulder volume to pattern volume.Both techniques were successful in predicting the ratio.In this study,the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19,respectively.展开更多
The particle filter (PF) is proposed to be the asynchronous direct-sequence code-division multiple-access (DS/CDMA) multiuser detector without knowing the channel state information. The PF performs symbol detectio...The particle filter (PF) is proposed to be the asynchronous direct-sequence code-division multiple-access (DS/CDMA) multiuser detector without knowing the channel state information. The PF performs symbol detection according to the joint posterior density probability of simulated particles including relative delays, fading gains and symbols via sequential importance sample and resample. A simplified scheme is also proposed by separating the indepent relative delays and fading with symbols. These parameters are modeled as the extended aggressive processes and estimated by the Kalman filter, so as to provide their arbitrary distribution for symbol detection. Simulation results show that the bit error rate of the PF is less than conventional detectors. Moreover, the complexity of PF is moderate comparable to other nonlinear suboptimal approaches.展开更多
Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing...Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.展开更多
The paper deals the popular news-talk radio station "Echo of Moscow" which is one of the most interesting and successful one in Moscow FM range. It provides thorough analysis of different previous and nowadays progr...The paper deals the popular news-talk radio station "Echo of Moscow" which is one of the most interesting and successful one in Moscow FM range. It provides thorough analysis of different previous and nowadays programs and web projects in comparison with main multimedia sphere trends. A particular attention is paid to "Echo of Moscow" web page as multimedia portal strongly packed with different functions such as its integration with social nets.展开更多
Referring to research on the Heterogeneous Network (Het-Net) application scenario and technique characters in IMT-Advaneed (The 4th Generation Mobile Communications) cellular system, this paper provides further an...Referring to research on the Heterogeneous Network (Het-Net) application scenario and technique characters in IMT-Advaneed (The 4th Generation Mobile Communications) cellular system, this paper provides further analysis on main technique aspects of Heterogeneous Network, discussion on interference issue due to multi-layer building by access points and their corresponding solutions from standardization and engineering implementation. The proposed solution can effectively solve the interference problem in IMT-advanced Het-Net, and also improves the networking performance dramaticaUy for future mobile communication systems.展开更多
Nowadays, the check of the organoleptic characteristics for the evaluation of extra virgin olive oil (EVOO) quality is regulated by the European Union (EU) authorities, which indicate the use of the panel test (P...Nowadays, the check of the organoleptic characteristics for the evaluation of extra virgin olive oil (EVOO) quality is regulated by the European Union (EU) authorities, which indicate the use of the panel test (PT). It is composed by a team of specialists that give a numerical value to many characteristics about flavours, synthesising a sensory analysis. Each expert answers questions about the aroma by assigning the adequate scores to each oil. The evaluation becomes objective by applying the statistical analysis of all the scores given by the participants: This is the definition of "measure" of Russell. The PT can be considered a true standard "metrological system" (considering the number of questions in the questionnaire), while the perceptions of the testers are the solicitations of it. To allow access to an expensive evaluation process by small companies, this work proposes to "disseminate" the properties of the metrology represented by PT. The results of the PT are arranged in an unsupervised artificial neural network (ANN), the Kohonen map, which represents the synthesis of self-organised output that has only the goal, in this paper, to make readable PT results. The dissemination process is obtained by the gas chromatographic (GC) analysis of each oil sample and through the identification of peaks corresponding to the perceptions. These signals are used for the training of the supervised Multi Layer Perceptron (MLP) ANN, with the back propagation algorithm, whose outputs are represented by the results of the PT. This procedure is exact a "metrological dissemination of a standard" and also the aim of the work: to classify EVOO without always resorting to PT.展开更多
Based on the immune mechanics and multi-agent technology, a multi-agent artificial immune network (Maopt-aiNet) algorithm is introduced. Maopt-aiNet makes use of the agent ability of sensing and acting to overcome pre...Based on the immune mechanics and multi-agent technology, a multi-agent artificial immune network (Maopt-aiNet) algorithm is introduced. Maopt-aiNet makes use of the agent ability of sensing and acting to overcome premature problem, and combines the global and local search in the searching process. The performance of the proposed method is examined with 6 benchmark problems and compared with other well-known intelligent algorithms. The experiments show that Maopt-aiNet outperforms the other algorithms in these benchmark functions. Furthermore, Maopt-aiNet is applied to determine the Murphree efficiency of distillation column and satisfactory results are obtained.展开更多
Air temperature and relative humidity have been the main parameters of meteorology study. In the past data could be obtained from in-situ observations, but the observations are local and sparse, especially over ocean....Air temperature and relative humidity have been the main parameters of meteorology study. In the past data could be obtained from in-situ observations, but the observations are local and sparse, especially over ocean. Now we can get them from satellites, yet it is hard to estimate them from sat- ellites directly so far. This paper presents a new method to retrieve monthly averaged sea air temper- ature (SAT) and relative humidity (RH) near sea surface from satellite data with artificial neural networks (ANN). Compared with the observations in Pacific and Atlantic, the root mean square (RMS) and the correlation between the estimated SAT and the observations are about 0.91 ~C and 0.99, respectively. The RMS and the correlation of RH are about 3.73% and 0.65, respectively. Compared with the multiple regression method, the ANN methodology is more powerful in building nonlinear relations in this research. Thus the global monthly average SAT and RH are retrieved from the fixed ANN network from July 1987 to May 2004. In general the annual average SAT shows the increasing trend in recent 18 years. The abnormality of SAT is decomposed with the empirical or- thogonal function (EOF). The leading three EOFs could explain 84% of the total variation. EOF1 (76.1%) presents the seasonal change of the SAT abnormality. EOF2 (4.6%) is mainly related with ENSO. EOF3 (3.3%) shows some new interesting phenomena appearing in the three main currents in Pacific, Atlantic and Indian Ocean.展开更多
Using multimedia writing tools ‘Author ware' for Windows 3.0b18, and making a multimedia interface for a simple interface generated by FoxPro 2.5B, mainly to solve how to connect an interface with Author ware and Fo...Using multimedia writing tools ‘Author ware' for Windows 3.0b18, and making a multimedia interface for a simple interface generated by FoxPro 2.5B, mainly to solve how to connect an interface with Author ware and FoxPro database, namely the communication problem between two separate programs under the Windows environment and to generate the multimedia interface which is consistent with the status and requests for the management information system, namely the problem that how to establish multimedia interface design.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
基金Project (2006AA06Z132) supported by High-tech Research and Development Program of ChinaProject (B604) supported by Leading Academic Discipline Project of Shanghai
文摘An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leaching time and temperature were employed as inputs to the network; the output of the network was the percentage of the ferric extraction iron from RGC. The multilayered feed-forward networks were trained by 33 sets of input-output patterns using a back propagation algorithm; a three-layer network with 8 neurons in the hidden layer gave optimal results. The model gave good predictions of high correlation coefficient (R2=0.966). The predictions by ANN are more accurate when compared with conventional multivariate regression analysis (MVRA). In addition, calculation with ANN model indicates that temperature is the predominant parameter and ozone concentration is the lesser influential parameter in the pre-oxidation process of refractory gold ore. The ANN neural network model accurately estimates the ferric extraction during pretreatment process of RGC in gold smelter plants and can be used to optimize the process parameters.
基金Project(51878078)supported by the National Natural Science Foundation of ChinaProject(2018-025)supported by the Training Program for High-level Technical Personnel in Transportation Industry,ChinaProject(CTKY-PTRC-2018-003)supported by the Design Theory,Method and Demonstration of Durability Asphalt Pavement Based on Heavy-duty Traffic Conditions in Shanghai Area,China。
文摘The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.
基金TheNationalNaturalScienceFoundationofChina (No .6 9984 0 0 3)
文摘The authors propose a new persistent transmission based real time Ethernet MAC protocol that provides a predictable upper bound for the delivery delay of real time frames. Moreover, it is compatible with the protocol used by the existing Ethernet controllers for conventional datagram traffic and thus standard Ethernet stations can be used in the system without any modification. The paper describes the protocol in detail and analyses the maximum delivery delay for real time traffic and the efficiency of the channel.
基金This work was supported by the State Key Program of Na- tional Nature Science Foundation of China under Grants No. U0835003, No. 60872087.
文摘A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is grounded on a Network Utility Maxmization (NUM) formulation which can be decomposed into a rate control problem and a packet scheduling problem. The solutions to these two problems perform resource allocation among different flows. Simulations demonstrate that TCP-I2NC results in a significant throughput gain and a small delay jitter. Network resource is fairly allocated via the solution to the NUM problem and the whole system also runs stably. Moreover, TCP-I2NC is compatible with traditional TCP variants.
文摘The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine,Iran was predicted via multiple regression method and artificial neural networks.Results of 33 blasts in the mine were collected for modeling.Input variables were:joints spacing,density and uniaxial compressive strength of the intact rock,burden,spacing,stemming,bench height to burden ratio,and specific charge.The dependent variable was ratio of boulder volume to pattern volume.Both techniques were successful in predicting the ratio.In this study,the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19,respectively.
基金Shanghai Municipal Education Commission,China(No.CL200516No.RE559)
文摘The particle filter (PF) is proposed to be the asynchronous direct-sequence code-division multiple-access (DS/CDMA) multiuser detector without knowing the channel state information. The PF performs symbol detection according to the joint posterior density probability of simulated particles including relative delays, fading gains and symbols via sequential importance sample and resample. A simplified scheme is also proposed by separating the indepent relative delays and fading with symbols. These parameters are modeled as the extended aggressive processes and estimated by the Kalman filter, so as to provide their arbitrary distribution for symbol detection. Simulation results show that the bit error rate of the PF is less than conventional detectors. Moreover, the complexity of PF is moderate comparable to other nonlinear suboptimal approaches.
文摘Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.
文摘The paper deals the popular news-talk radio station "Echo of Moscow" which is one of the most interesting and successful one in Moscow FM range. It provides thorough analysis of different previous and nowadays programs and web projects in comparison with main multimedia sphere trends. A particular attention is paid to "Echo of Moscow" web page as multimedia portal strongly packed with different functions such as its integration with social nets.
文摘Referring to research on the Heterogeneous Network (Het-Net) application scenario and technique characters in IMT-Advaneed (The 4th Generation Mobile Communications) cellular system, this paper provides further analysis on main technique aspects of Heterogeneous Network, discussion on interference issue due to multi-layer building by access points and their corresponding solutions from standardization and engineering implementation. The proposed solution can effectively solve the interference problem in IMT-advanced Het-Net, and also improves the networking performance dramaticaUy for future mobile communication systems.
文摘Nowadays, the check of the organoleptic characteristics for the evaluation of extra virgin olive oil (EVOO) quality is regulated by the European Union (EU) authorities, which indicate the use of the panel test (PT). It is composed by a team of specialists that give a numerical value to many characteristics about flavours, synthesising a sensory analysis. Each expert answers questions about the aroma by assigning the adequate scores to each oil. The evaluation becomes objective by applying the statistical analysis of all the scores given by the participants: This is the definition of "measure" of Russell. The PT can be considered a true standard "metrological system" (considering the number of questions in the questionnaire), while the perceptions of the testers are the solicitations of it. To allow access to an expensive evaluation process by small companies, this work proposes to "disseminate" the properties of the metrology represented by PT. The results of the PT are arranged in an unsupervised artificial neural network (ANN), the Kohonen map, which represents the synthesis of self-organised output that has only the goal, in this paper, to make readable PT results. The dissemination process is obtained by the gas chromatographic (GC) analysis of each oil sample and through the identification of peaks corresponding to the perceptions. These signals are used for the training of the supervised Multi Layer Perceptron (MLP) ANN, with the back propagation algorithm, whose outputs are represented by the results of the PT. This procedure is exact a "metrological dissemination of a standard" and also the aim of the work: to classify EVOO without always resorting to PT.
基金Supported by the National Natural Science Foundation of China (61271137)Public Science and Technology Research Funds Projects of Zhejiang Province (2011C21077)the Natural Science Foundation of Ningbo City (2011A610173)
文摘Based on the immune mechanics and multi-agent technology, a multi-agent artificial immune network (Maopt-aiNet) algorithm is introduced. Maopt-aiNet makes use of the agent ability of sensing and acting to overcome premature problem, and combines the global and local search in the searching process. The performance of the proposed method is examined with 6 benchmark problems and compared with other well-known intelligent algorithms. The experiments show that Maopt-aiNet outperforms the other algorithms in these benchmark functions. Furthermore, Maopt-aiNet is applied to determine the Murphree efficiency of distillation column and satisfactory results are obtained.
基金Supported by The National Key Technology R&D Program(No.2013BAD13B01)the National High Technology Research and Development Program of China(No.2001AA633060)
文摘Air temperature and relative humidity have been the main parameters of meteorology study. In the past data could be obtained from in-situ observations, but the observations are local and sparse, especially over ocean. Now we can get them from satellites, yet it is hard to estimate them from sat- ellites directly so far. This paper presents a new method to retrieve monthly averaged sea air temper- ature (SAT) and relative humidity (RH) near sea surface from satellite data with artificial neural networks (ANN). Compared with the observations in Pacific and Atlantic, the root mean square (RMS) and the correlation between the estimated SAT and the observations are about 0.91 ~C and 0.99, respectively. The RMS and the correlation of RH are about 3.73% and 0.65, respectively. Compared with the multiple regression method, the ANN methodology is more powerful in building nonlinear relations in this research. Thus the global monthly average SAT and RH are retrieved from the fixed ANN network from July 1987 to May 2004. In general the annual average SAT shows the increasing trend in recent 18 years. The abnormality of SAT is decomposed with the empirical or- thogonal function (EOF). The leading three EOFs could explain 84% of the total variation. EOF1 (76.1%) presents the seasonal change of the SAT abnormality. EOF2 (4.6%) is mainly related with ENSO. EOF3 (3.3%) shows some new interesting phenomena appearing in the three main currents in Pacific, Atlantic and Indian Ocean.
文摘Using multimedia writing tools ‘Author ware' for Windows 3.0b18, and making a multimedia interface for a simple interface generated by FoxPro 2.5B, mainly to solve how to connect an interface with Author ware and FoxPro database, namely the communication problem between two separate programs under the Windows environment and to generate the multimedia interface which is consistent with the status and requests for the management information system, namely the problem that how to establish multimedia interface design.