The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and res...The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and results are described and carried out. Results indicate that heat transfer coefficient (HTC) is increased with the increase of blowing ratio. When the blowing ratio is lower, the distribution of HTC along the heated wall can be divided into three regions. For larger blowing ratio or diameter, the cooling characteristics oi parallel-inlet film holes are similar to those of convective heat transfer around flat. Furthermore, when hole diameter is deter- mined, the arrangement patterns of film hole and the blowing ratio take a great influence on HTC.展开更多
This paper presents the setup and performance of a drop tower experiment which investigates the behavior of liquid during self-driven capillary transport between two parallel perforated plates under microgravity. With...This paper presents the setup and performance of a drop tower experiment which investigates the behavior of liquid during self-driven capillary transport between two parallel perforated plates under microgravity. With the onset ofmicrogravity the liquid rises between the two parallel plates as a result of capillary pressure. Eight different sets of plates are tested in this study and the free surface height and the volume of transported liquid is subsequently analyzed. The plate sets differ in geometric properties of their perforations, distance, and width. In each set the perforations of both plates are identical and have a diameter of a few millimeters. The capillary rise velocity is influenced by the perforation diameter and the area porosity of the plates. As could be expected, the capillary transport capability increases with decreasing plate porosity.展开更多
文摘The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and results are described and carried out. Results indicate that heat transfer coefficient (HTC) is increased with the increase of blowing ratio. When the blowing ratio is lower, the distribution of HTC along the heated wall can be divided into three regions. For larger blowing ratio or diameter, the cooling characteristics oi parallel-inlet film holes are similar to those of convective heat transfer around flat. Furthermore, when hole diameter is deter- mined, the arrangement patterns of film hole and the blowing ratio take a great influence on HTC.
文摘This paper presents the setup and performance of a drop tower experiment which investigates the behavior of liquid during self-driven capillary transport between two parallel perforated plates under microgravity. With the onset ofmicrogravity the liquid rises between the two parallel plates as a result of capillary pressure. Eight different sets of plates are tested in this study and the free surface height and the volume of transported liquid is subsequently analyzed. The plate sets differ in geometric properties of their perforations, distance, and width. In each set the perforations of both plates are identical and have a diameter of a few millimeters. The capillary rise velocity is influenced by the perforation diameter and the area porosity of the plates. As could be expected, the capillary transport capability increases with decreasing plate porosity.