期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
祁连山区黑河上游多年冻土分布考察 被引量:30
1
作者 王庆峰 张廷军 +6 位作者 吴吉春 彭小清 钟歆玥 牟翠翠 王康 吴青柏 程国栋 《冰川冻土》 CSCD 北大核心 2013年第1期19-29,共11页
高山多年冻土的分布及土壤季节冻融过程对地表水文过程、生态系统、碳循环及寒区工程建设等都有很大的影响.黑河上游地处祁连山中东部,属于高原亚寒带半干旱气候,研究黑河流域多年冻土分布对于系统理解该区域的生态-水文过程、气候与环... 高山多年冻土的分布及土壤季节冻融过程对地表水文过程、生态系统、碳循环及寒区工程建设等都有很大的影响.黑河上游地处祁连山中东部,属于高原亚寒带半干旱气候,研究黑河流域多年冻土分布对于系统理解该区域的生态-水文过程、气候与环境变化以及水资源评价、工程建设等非常重要.2011年6—8月对黑河干流源头西支开展了多年冻土调查,沿二尕公路(S204)在热水大坂垭口至石棉矿岔口之间区域,完成测温孔7眼,并布设测温管进行地温监测.根据勘察、钻探及测温资料,确定了黑河源头地区山地多年冻土下界为海拔3 650~3 700m之间.受高度地带性的控制,随着海拔的降低,活动层厚度由在海拔4 132m时的1.6m增加至在多年冻土下界处的约4.0m,多年冻土年平均地温也相应的由-1.7℃增加到0.0℃左右,而多年冻土厚度由100m以上减小到多年冻土下界处的0.0m.同时,坡度和坡向、岩性、含水(冰)量、地下水、河水等局地因素对多年冻土温度和厚度也有重要的作用. 展开更多
关键词 多年冻土下界 活动层 海拔 年平均地温 黑河流域
下载PDF
探地雷达在祁连山多年冻土调查中的应用 被引量:14
2
作者 杜二计 赵林 李韧 《冰川冻土》 CSCD 北大核心 2009年第2期364-371,共8页
探地雷达用于多年冻土区的勘测一般通过钻孔和探坑进行直接对比来确定冻土层分布状况,但在野外工作中,钻孔资料一般很难得到,而探坑在有限的人力物力条件下也很难开挖,这给冻土层的野外确定带来很大困难.我们采用雷达探测资料寻找浅层... 探地雷达用于多年冻土区的勘测一般通过钻孔和探坑进行直接对比来确定冻土层分布状况,但在野外工作中,钻孔资料一般很难得到,而探坑在有限的人力物力条件下也很难开挖,这给冻土层的野外确定带来很大困难.我们采用雷达探测资料寻找浅层地下冰深度来确定多年冻土上限的深度,企图能在没有现场对比资料的情况下寻找一种利用探地雷达探测多年冻土的简易方法.探测结果显示,通过地貌特征寻找浅层地下冰可能存在的典型地段进行雷达探测能很容易确定多年冻土上限的位置.2007年在祁连山区利用Pulse EKKO Pro探地雷达进行了多年冻土的野外探测,结果显示:大雪山老虎沟海拔3 684 m(39.5907°N;96.4339°E)处多年冻土上限约为2.2 m,在冷龙岭北坡的水管河源头海拔4 053 m(37.5463°N;101.7709°E)至海拔3 907 m(37.5508°N;101.7752°E)处的多年冻土上限深度为2.5 m,在宁昌河源头沿河岸从海拔3 448 m(37.5649°N;101.8455°E)至海拔3 377 m(37.5797°N,101.8377°E)处多年冻土上限为2.4 m,在走廊南山的观山河源头海拔3 468 m(39.2615°N;98.6715°E)处多年冻土上限深度在2 m左右.另外根据4个勘察区多年冻土特征地貌分布区的最低分布海拔总结得出,老虎沟地区为冻土下界分布最高地区,关山河源头为冻土下界分布最低地区.其原因主要是降水和植被的差异造成的结果,降水量大和植被良好的地区多年冻土下界的分布海拔就低,反之亦然. 展开更多
关键词 探地雷达 祁连山 多年冻土 多年冻土上限 多年冻土下界
下载PDF
西部高海拔多年冻土发育规律的研究 被引量:2
3
作者 刘新龙 符敏 付强 《地下空间与工程学报》 CSCD 2007年第z1期1324-1326,共3页
在综合冻土研究文献及勘察报告的基础上,分析了西部高海拔地区多年冻土分布、厚度及温度的发育规律,同时就影响其地带性发育规律的因素进行了阐述,有益于正确抉择多年冻土区的基础工程问题。
关键词 多年冻土 高海拔 多年冻土下界
下载PDF
青海高原中、东部多年冻土及寒区环境退化 被引量:70
4
作者 罗栋梁 金会军 +3 位作者 林琳 何瑞霞 杨思忠 常晓丽 《冰川冻土》 CSCD 北大核心 2012年第3期538-546,共9页
近年来,随着全球气候变暖和人类社会经济活动的增强,处于季节冻土向片状连续多年冻土过渡区的青海高原中、东部多年冻土退化显著.巴颜喀拉山南坡清水河地区岛状冻土分布南界向北萎缩5km;清水河、黄河沿、星星海南岸、黑河沿岸、花石峡... 近年来,随着全球气候变暖和人类社会经济活动的增强,处于季节冻土向片状连续多年冻土过渡区的青海高原中、东部多年冻土退化显著.巴颜喀拉山南坡清水河地区岛状冻土分布南界向北萎缩5km;清水河、黄河沿、星星海南岸、黑河沿岸、花石峡等岛状冻土和不连续多年冻土出现融化夹层和不衔接多年冻土,有些地区冻土岛和深埋藏多年冻土消失,多年冻土上限下降、季节冻结深度变浅;片状连续多年冻土地温升高、冻土厚度减薄.1991—2010年巴颜喀拉山南北坡不连续多年冻土分布下界分别上升90m和100m,1995—2010年布青山南北坡不连续多年冻土分布下界分别上升80m和50m.造成冻土退化的主要原因为气候变暖,使得地表年均温度由负变正,冻结期缩短,融化期延长,冻/融指数比缩小.伴随着冻土退化,高寒环境也显著退化,地下水位下降,植被覆盖度降低,高寒沼泽湿地和河湖萎缩,土地荒漠化和沙漠化造成了地表覆被条件改变. 展开更多
关键词 青海高原中东部 多年冻土退化 多年冻土分布下界 气候变暖
下载PDF
长江上游沱沱河源区多年冻土发育特征 被引量:1
5
作者 周华云 刘广岳 +15 位作者 杨斌 邹德富 赵林 杜二计 谭昌海 陈文 杨朝磊 文浪 旺扎多吉 张浔浔 肖瑶 胡国杰 李智斌 谢昌卫 汪凌霄 刘世博 《冰川冻土》 CSCD 北大核心 2022年第1期69-82,共14页
沱沱河流域是长江的发源地之一,其广泛分布的多年冻土对长江源区的产汇流过程、生态系统乃至于区域气候都有着重要影响,对该区域多年冻土分布和特征的调查和了解,可为研究江河源区多年冻土与气候、水文、生态的相互作用关系提供基础数... 沱沱河流域是长江的发源地之一,其广泛分布的多年冻土对长江源区的产汇流过程、生态系统乃至于区域气候都有着重要影响,对该区域多年冻土分布和特征的调查和了解,可为研究江河源区多年冻土与气候、水文、生态的相互作用关系提供基础数据支撑。2020年10—11月,研究团队对沱沱河源区的多年冻土开展了为期50天的野外调查工作,并在不同下垫面类型、不同地貌部位和不同海拔高度共布设钻孔32个,总钻进深度1200 m。该文是基于钻孔和探坑资料对沱沱河源区多年冻土特征和地下冰发育状况的初步总结。结果显示,沱沱河源区多年冻土在一定程度上受河流和地热影响形成了局部融区,其多年冻土下界大致在4650~4680 m之间;钻孔揭示的多年冻土上限平均埋藏深度为(2.47±0.98)m,部分地区存在融化夹层;受浅表层沉积物岩性和地热的影响,多年冻土下限埋藏深度相对较浅,平均为19.3 m,多年冻土相对较薄,平均厚度为15.0 m;多年冻土下限深度和多年冻土的厚度最大为75.0 m和72.7 m;地形地貌、沉积物特征和地热条件是影响多年冻土厚度存在较大空间差异的主要原因。研究区内地下冰主要分布于15.0 m深度以上范围内,同时也发现了处于萎缩状态的冰核丘与石质冻胀丘,这些现象也一定程度上与该研究区多年冻土退化过程有关。 展开更多
关键词 长江 沱沱河源区 多年冻土下界 融区 冻胀丘
下载PDF
祁连山区多年冻土空间分布模拟 被引量:9
6
作者 彭晨阳 盛煜 +2 位作者 吴吉春 曹伟 何彬彬 《冰川冻土》 CSCD 北大核心 2021年第1期158-169,共12页
祁连山区位于青藏高原东北边缘,是亚洲水塔重要的组成部分,多年冻土的变化对生态系统和水资源平衡有着重要影响。基于青藏高原第二次综合科学考察、道路勘察钻孔点以及前人所获得的多年冻土下界资料,回归得出祁连山区多年冻土下界统计模... 祁连山区位于青藏高原东北边缘,是亚洲水塔重要的组成部分,多年冻土的变化对生态系统和水资源平衡有着重要影响。基于青藏高原第二次综合科学考察、道路勘察钻孔点以及前人所获得的多年冻土下界资料,回归得出祁连山区多年冻土下界统计模型,借助ArcGIS平台在DEM数据的支持下,模拟出祁连山区多年冻土空间分布图。结果表明:祁连山区多年冻土分布的下界具有良好的地带性规律,表现为随经纬度增加而降低的规律;祁连山区多年冻土在空间分布上呈现出以哈拉湖为中心向四周扩散的分布格局;祁连山区总面积约为16.90×10^(4)km^(2),其中多年冻土面积约为8.03×10^(4)km^(2),占总面积约47.51%。多年冻土区与季节冻土区之间存在着有不连续多年冻土分布的过渡区,过渡区面积约1.43×10^(4)km^(2),占总面积约8.46%。 展开更多
关键词 高海拔多年冻土 祁连山区 多年冻土下界 空间分布模拟 地带性规律
下载PDF
气候变暖的影响及应对 被引量:2
7
作者 安可霞 《中学政史地(初中适用)》 2006年第11期30-34,共5页
关键词 乞力马扎罗 气候带 全球平均气温 南极冰盖 多年冻土下界 森林大火 永久冻土 全球变暖 北极海冰
下载PDF
冻土
8
《中国地理与资源文摘》 2010年第3期27-29,共3页
关键词 冻土深度 多年冻土活动层 地下冰 多年冻土下界 地表粗糙度 潜在蒸散 冰川冻土 冻土退化 气温变化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部