基于ROMS(the Regional Ocean Model System)模式,以等温线范围变化作为黄海冷水团范围变化的示性指标,采用谱分析及相关分析的方法,分析夏季黄海冷水团范围变化。结果表明:黄海冷水团范围的变化存在明显的年变化特征,与纬向风速和经向...基于ROMS(the Regional Ocean Model System)模式,以等温线范围变化作为黄海冷水团范围变化的示性指标,采用谱分析及相关分析的方法,分析夏季黄海冷水团范围变化。结果表明:黄海冷水团范围的变化存在明显的年变化特征,与纬向风速和经向风速相关,风速大则范围就大;黄海冷水团的范围还存在着5年的周期变化特征,其与ENSO现象相关;厄尔尼诺年时,滞后17个月的黄海冷水团的分布范围一般会较小;而拉尼娜年时,滞后17个月的黄海冷水团的分布范围会比较大。展开更多
Previous studies have shown that the Atlantic Multidecadal Oscillation (AMO) can play an important role in modulating the variabilityoflndian summer monsoon rainfall (ISMR) over a 50-60-yr timescale. A significant...Previous studies have shown that the Atlantic Multidecadal Oscillation (AMO) can play an important role in modulating the variabilityoflndian summer monsoon rainfall (ISMR) over a 50-60-yr timescale. A significant positive correlation between the AMO and ISMR is found both in observations and models. However, instrumental records show that the relationship becomes non-significant or even of opposite sign after the mid-1990s, suggesting a weakening of the AMO-ISMR connection. The mechanism for the breakdown of the AMO-ISMR connection is investigated in the present work, and the results suggest that a substantial warming in the Indian-tropical western Pacific Ocean plays a role. The warming weakens the meridional gradient of tropospheric temperature between Eurasia and the indian Ocean, and reduces the meridional sea level pressure gradient between the Indian Subcontinent and Indian Ocean, weakening the Indian summer monsoon. Thus, warming in the Indian-tropical western Pacific Ocean seems responsible for the weakened connection between the AMO and ISM.展开更多
Based on multiple proxies from the Southern Hemisphere, an austral summer (December-January-February: DJF) Antarctic Oscillation Index (AAO) since 1500 A.D. was reconstructed with a focus on interannual to interdecada...Based on multiple proxies from the Southern Hemisphere, an austral summer (December-January-February: DJF) Antarctic Oscillation Index (AAO) since 1500 A.D. was reconstructed with a focus on interannual to interdecadal variability (<50 a). By applying a multivariate regression method, the observational AAO-proxy relations were calibrated and cross-validated for the period of 1957 89. The regressions were employed to compute the DJF-AAO index for 1500 1956. To verify the results, the authors checked the explained variance (r 2 ), the reduction of error (RE), and the standard error (SE). Cross-validation was performed by applying a leave-one-out validation method. Over the entire reconstruction period, the mean values of r 2 , RE, and SE are 59.9%, 0.47, and 0.67, respectively. These statistics indicate that the DJF-AAO reconstruction is relatively skillful and reliable for the last ~460 years. The reconstructed AAO variations on the interannual and interdecadal timescales compare favorably with those of several shorter sea level pressure (SLP)-based AAO indices. The leading periods of the DJF-AAO index over the last 500 years are ~2.4, ~2.6, ~6.3, ~24.1, and ~37.6 years, all of which are significant at the 95% level as estimated by power spectral analysis.展开更多
The internal modes of the North Pacific can lead to climatic oscillations through ocean-atmosphere interactions and induce global climate responses.The best example is the Pacific Decadal Oscillation, but this fails t...The internal modes of the North Pacific can lead to climatic oscillations through ocean-atmosphere interactions and induce global climate responses.The best example is the Pacific Decadal Oscillation, but this fails to explain many climate phenomena. Here, another multidecadal variability over the North Pacific is described, found by analyzing reconstructed data covering the past 140 years. It is named the Pacific Multidecadal Oscillation (PMO), with anomalously high/low SSTs over the northeastern Pacific, and a quasi-60-year cycle. Related to this low-frequency variability of SST, the global mean temperature and precipitation present significant interdecadal differences. More importantly, the PMO index leads the global mean surface air temperature and SST by one to three years. The Arctic Oscillation pattern and atmospheric circulations are shown to change substantially with the transition of the PMO mode from positive to negative phases. This multidecadal oscillation improves the prospect for a long-term forecast of the global warming trend, since the PMO bears a remarkable relationship with global temperature.展开更多
Based on the ERA reanalysis winds data, the multi-time scale variations of Somali jet are analyzed synthetically. The jet's influences on rainfall in China on interannual, interdecadal and sub-monthly scales are a...Based on the ERA reanalysis winds data, the multi-time scale variations of Somali jet are analyzed synthetically. The jet's influences on rainfall in China on interannual, interdecadal and sub-monthly scales are also studied using correlation and composite analyses. The results demonstrate that the interdecadal variations of the jet are significant.The Somali jet became weaker in the 1960 s and became the weakest in the early 1970 s before enhancing slowly in the late 1970 s. Moreover, the relation between the Somali jet and summer precipitation in China is close, but varies on different timescales. Preliminary analysis shows that the intensity variations in May and June during the early days of establishment are well correlated with summer precipitation in China. The Somali jet intensity on the interdecadal scale is closely related with interdecadal variations of the precipitation in China. Regardless of leading or contemporaneous correlation, the correlations between the Somali jet intensity and the rainfall in northern and southern China show obvious interdecadal variations. Moreover, the link between the anomalies of the jet intensity in May-August and precipitation evolution on synoptic scale in China is further studied. China has more rainfall with positive anomalies of the Somali jet but less rainfall with negative anomalies during the active period of the jet. The influence of positive Somali jet anomalies on China precipitation is more evident.展开更多
Based on a 10-year simulation of six Regional Climate Models(RCMs) in phase II of the Regional Climate Model Inter-Comparison Project(RMIP) for Asia,the multivariate statistical method of common principal components(C...Based on a 10-year simulation of six Regional Climate Models(RCMs) in phase II of the Regional Climate Model Inter-Comparison Project(RMIP) for Asia,the multivariate statistical method of common principal components(CPCs) is used to analyze and compare the spatiotemporal characteristics of temperature and precipitation simulated by multi-RCMs over China,including the mean climate states and their seasonal transition,the spatial distribution of interannual variability,and the interannual variation.CPC is an effective statistical tool for analyzing the results of different models.Compared with traditional statistical methods,CPC analyses provide a more complete statistical picture for observation and simulation results.The results of CPC analyses show that the climatological means and the characteristics of seasonal transition over China can be accurately simulated by RCMs.However,large biases exist in the interannual variation in certain years or for individual models.展开更多
文摘基于ROMS(the Regional Ocean Model System)模式,以等温线范围变化作为黄海冷水团范围变化的示性指标,采用谱分析及相关分析的方法,分析夏季黄海冷水团范围变化。结果表明:黄海冷水团范围的变化存在明显的年变化特征,与纬向风速和经向风速相关,风速大则范围就大;黄海冷水团的范围还存在着5年的周期变化特征,其与ENSO现象相关;厄尔尼诺年时,滞后17个月的黄海冷水团的分布范围一般会较小;而拉尼娜年时,滞后17个月的黄海冷水团的分布范围会比较大。
基金supported by the National Key Research and Development Program of China[grant number 2016YFA0601802]the National Natural Science Foundation of China[grant number41375085],[grant number 421004]the Strategic Project of the Chinese Academy of Sciences[grant number XDA11010401]
文摘Previous studies have shown that the Atlantic Multidecadal Oscillation (AMO) can play an important role in modulating the variabilityoflndian summer monsoon rainfall (ISMR) over a 50-60-yr timescale. A significant positive correlation between the AMO and ISMR is found both in observations and models. However, instrumental records show that the relationship becomes non-significant or even of opposite sign after the mid-1990s, suggesting a weakening of the AMO-ISMR connection. The mechanism for the breakdown of the AMO-ISMR connection is investigated in the present work, and the results suggest that a substantial warming in the Indian-tropical western Pacific Ocean plays a role. The warming weakens the meridional gradient of tropospheric temperature between Eurasia and the indian Ocean, and reduces the meridional sea level pressure gradient between the Indian Subcontinent and Indian Ocean, weakening the Indian summer monsoon. Thus, warming in the Indian-tropical western Pacific Ocean seems responsible for the weakened connection between the AMO and ISM.
基金supported by the National Natural Science Foundation of China (Grant No. 40675035)the National High Technology Research and Development Program of China (Grant No. 2008AA121704)the National Key Technologies R&D Program of China (Grant No. 2009BAC51B05)
文摘Based on multiple proxies from the Southern Hemisphere, an austral summer (December-January-February: DJF) Antarctic Oscillation Index (AAO) since 1500 A.D. was reconstructed with a focus on interannual to interdecadal variability (<50 a). By applying a multivariate regression method, the observational AAO-proxy relations were calibrated and cross-validated for the period of 1957 89. The regressions were employed to compute the DJF-AAO index for 1500 1956. To verify the results, the authors checked the explained variance (r 2 ), the reduction of error (RE), and the standard error (SE). Cross-validation was performed by applying a leave-one-out validation method. Over the entire reconstruction period, the mean values of r 2 , RE, and SE are 59.9%, 0.47, and 0.67, respectively. These statistics indicate that the DJF-AAO reconstruction is relatively skillful and reliable for the last ~460 years. The reconstructed AAO variations on the interannual and interdecadal timescales compare favorably with those of several shorter sea level pressure (SLP)-based AAO indices. The leading periods of the DJF-AAO index over the last 500 years are ~2.4, ~2.6, ~6.3, ~24.1, and ~37.6 years, all of which are significant at the 95% level as estimated by power spectral analysis.
基金supported by the National Natural Science Foundation of China[grant number 41421004],[grant number41130103]
文摘The internal modes of the North Pacific can lead to climatic oscillations through ocean-atmosphere interactions and induce global climate responses.The best example is the Pacific Decadal Oscillation, but this fails to explain many climate phenomena. Here, another multidecadal variability over the North Pacific is described, found by analyzing reconstructed data covering the past 140 years. It is named the Pacific Multidecadal Oscillation (PMO), with anomalously high/low SSTs over the northeastern Pacific, and a quasi-60-year cycle. Related to this low-frequency variability of SST, the global mean temperature and precipitation present significant interdecadal differences. More importantly, the PMO index leads the global mean surface air temperature and SST by one to three years. The Arctic Oscillation pattern and atmospheric circulations are shown to change substantially with the transition of the PMO mode from positive to negative phases. This multidecadal oscillation improves the prospect for a long-term forecast of the global warming trend, since the PMO bears a remarkable relationship with global temperature.
基金National Basic Research Program of China(973 Program,2012CB957804)Natural Science Foundation of China(41175051)
文摘Based on the ERA reanalysis winds data, the multi-time scale variations of Somali jet are analyzed synthetically. The jet's influences on rainfall in China on interannual, interdecadal and sub-monthly scales are also studied using correlation and composite analyses. The results demonstrate that the interdecadal variations of the jet are significant.The Somali jet became weaker in the 1960 s and became the weakest in the early 1970 s before enhancing slowly in the late 1970 s. Moreover, the relation between the Somali jet and summer precipitation in China is close, but varies on different timescales. Preliminary analysis shows that the intensity variations in May and June during the early days of establishment are well correlated with summer precipitation in China. The Somali jet intensity on the interdecadal scale is closely related with interdecadal variations of the precipitation in China. Regardless of leading or contemporaneous correlation, the correlations between the Somali jet intensity and the rainfall in northern and southern China show obvious interdecadal variations. Moreover, the link between the anomalies of the jet intensity in May-August and precipitation evolution on synoptic scale in China is further studied. China has more rainfall with positive anomalies of the Somali jet but less rainfall with negative anomalies during the active period of the jet. The influence of positive Somali jet anomalies on China precipitation is more evident.
基金supported by the National Natural Science Foundation of China (General Program,Grant No.40975048)the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA05090207)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-EW-202)
文摘Based on a 10-year simulation of six Regional Climate Models(RCMs) in phase II of the Regional Climate Model Inter-Comparison Project(RMIP) for Asia,the multivariate statistical method of common principal components(CPCs) is used to analyze and compare the spatiotemporal characteristics of temperature and precipitation simulated by multi-RCMs over China,including the mean climate states and their seasonal transition,the spatial distribution of interannual variability,and the interannual variation.CPC is an effective statistical tool for analyzing the results of different models.Compared with traditional statistical methods,CPC analyses provide a more complete statistical picture for observation and simulation results.The results of CPC analyses show that the climatological means and the characteristics of seasonal transition over China can be accurately simulated by RCMs.However,large biases exist in the interannual variation in certain years or for individual models.