期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进U-Net的全心脏CT图像分割 被引量:1
1
作者 陈秋叶 韦瑞华 +2 位作者 石璐莹 吴甜 刘海华 《现代信息科技》 2021年第13期76-80,共5页
针对CT图像中全心脏结构复杂度高、分割不完整及分割精度低等问题,文章提出了一种改进U-Net的全心脏分割方法。根据全心脏结构形态特点,文章将多并行尺度特征融合模块引入U-Net网络的编码层,并在U-Net网络的跳层连接中加入了注意力机制... 针对CT图像中全心脏结构复杂度高、分割不完整及分割精度低等问题,文章提出了一种改进U-Net的全心脏分割方法。根据全心脏结构形态特点,文章将多并行尺度特征融合模块引入U-Net网络的编码层,并在U-Net网络的跳层连接中加入了注意力机制。文章利用MM-WHS数据集将改进的全心脏分割算法在中南民族大学认知科学实验室中进行了一系列的全心脏分割实验。实验结果显示,文章提出的算法分割相似度达到88.73%,提高了全心脏结构的分割准确率。 展开更多
关键词 全心脏CT图像分割 改进U-Net网络 多并行尺度特征融合 注意力机制
下载PDF
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
2
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部