期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于DWI+FLAIR图像的急性缺血性卒中患者发病时间预测 被引量:2
1
作者 王燕玲 王超 赵刚 《生命科学仪器》 2022年第4期65-70,共6页
为精准预测急性卒中发病时间,结合DWI图像与液体衰减反转恢复序列(fluid attenuated inversion recovery,FLAIR)的差异,采用Inception V3网络对图像特征进行提取,然后利用Softmax函数对急性缺血性脑卒中患者的发病时间进行分类预测,最... 为精准预测急性卒中发病时间,结合DWI图像与液体衰减反转恢复序列(fluid attenuated inversion recovery,FLAIR)的差异,采用Inception V3网络对图像特征进行提取,然后利用Softmax函数对急性缺血性脑卒中患者的发病时间进行分类预测,最后以三台医院的317例急性缺血性脑卒中患者MRI影像作为数据集进行验证。结果表明,本研究构建的多序列(DWI+FLAIR)深度学习模型具有较强的分类预测能力,预测精度达85.7%,AUC值达0.852;相较于单序列和人工判断,所提的多序列深度学习模型对急性缺血性脑卒中患者的发病时间预测精度更高。由此得出,本模型可更好辅助临床医师判断急性缺血性脑卒中患者的发病时间,从而为提前介入治疗提供了可靠证据。 展开更多
关键词 急性卒中 DWI图像 FLAIR序列 InceptionV3模型 多序列模型
下载PDF
基于几何特征的手势识别方法 被引量:26
2
作者 林水强 吴亚东 陈永辉 《计算机工程与设计》 CSCD 北大核心 2014年第2期636-640,共5页
研究基于手势图像几何特征的方法实现自然手势识别交互。基于肤色模型,提出一种多序列背景模型并结合肤色块跟踪和几何形状估计提取手势图像,通过分析手势几何特征计算特征参数,采用决策树分类方法对手势几何特征属性进行归纳判定,识别... 研究基于手势图像几何特征的方法实现自然手势识别交互。基于肤色模型,提出一种多序列背景模型并结合肤色块跟踪和几何形状估计提取手势图像,通过分析手势几何特征计算特征参数,采用决策树分类方法对手势几何特征属性进行归纳判定,识别手势。实验结果表明,在常规背景并且室内光照良好的环境下,该方法对预定义的6种自然手势类型识别准确率达到94%以上,能够很好地完成实时多媒体交互应用。 展开更多
关键词 人机交互 手势识别 几何特征 多序列背景模型 决策树
下载PDF
Multivariate time series prediction based on AR_CLSTM 被引量:2
3
作者 QIAO Gangzhu SU Rong ZHANG Hongfei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期322-330,共9页
Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significanc... Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significance.Recently,the encoder-decoder model combined with long short-term memory(LSTM)is widely used for multivariate time series prediction.However,the encoder can only encode information into fixed-length vectors,hence the performance of the model decreases rapidly as the length of the input sequence or output sequence increases.To solve this problem,we propose a combination model named AR_CLSTM based on the encoder_decoder structure and linear autoregression.The model uses a time step-based attention mechanism to enable the decoder to adaptively select past hidden states and extract useful information,and then uses convolution structure to learn the internal relationship between different dimensions of multivariate time series.In addition,AR_CLSTM combines the traditional linear autoregressive method to learn the linear relationship of the time series,so as to further reduce the error of time series prediction in the encoder_decoder structure and improve the multivariate time series Predictive effect.Experiments show that the AR_CLSTM model performs well in different time series predictions,and its root mean square error,mean square error,and average absolute error all decrease significantly. 展开更多
关键词 encoder_decoder attention mechanism CONVOLUTION autoregression model multivariate time series
下载PDF
Out-of-time-order correlation for many-body localization 被引量:3
4
作者 Ruihua Fan Pengfei Zhang +1 位作者 Huitao Shen Hui Zhai 《Science Bulletin》 SCIE EI CAS CSCD 2017年第10期707-711,共5页
In this paper we first compute the out-of-time-order correlators (OTOC) for both a phenomenological model and a random-field XXZ model in the many-body localized phase. We show that the OTOC decreases in power law i... In this paper we first compute the out-of-time-order correlators (OTOC) for both a phenomenological model and a random-field XXZ model in the many-body localized phase. We show that the OTOC decreases in power law in a many-body localized system at the scrambling time. We also find that the OTOC can also be used to distinguish a many-body localized phase from an Anderson localized phase, while a normal correlator cannot. Furthermore, we prove an exact theorem that relates the growth of the second Renyi entropy in the quench dynamics to the decay of the OTOC in equilibrium. This theorem works for a generic quantum system. We discuss various implications of this theorem. 展开更多
关键词 Out-of-time-order correlationMany-body localizationR6nyi entropy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部