In this paper the theory analysis and the finite element analysis are carried out to investigate the strength of the thick plate which used as the top cover of High Pressure/High Temperature Heat Pipe Adibatic Reactor...In this paper the theory analysis and the finite element analysis are carried out to investigate the strength of the thick plate which used as the top cover of High Pressure/High Temperature Heat Pipe Adibatic Reactor.The results show that the effect of holes on the plate is not enough to weaken the strength of this plate.展开更多
Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blu...Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blue and methyl orange)and tetracycline hydrochloride under visible-light irradiation(λ〉420 nm).Compared to bulk g-C3N4,porous g-C3N4exhibited much better capability for removing these contaminants,especially under visible-light irradiation,due to the enlarged specific surface area and more efficient separation of photogenerated charge carries.In particular,porous g-C3N4obtained by calcining bulk g-C3N4in air at 525℃ showed the highest visible-light-driven catalytic activity among these samples.Superoxide radical anions(·O2^-)were found to be the primary active species responsible for photodegradation.展开更多
This study examines oblique wave motion over multiple submerged porous bars in front of a vertical wall. Based on linear potential theory, an analytical solution for the present problem is developed using matched eige...This study examines oblique wave motion over multiple submerged porous bars in front of a vertical wall. Based on linear potential theory, an analytical solution for the present problem is developed using matched eigenfunction expansions. A complex dispersion relation is adopted to describe the wave elevation and energy dissipation over submerged porous bars. In the analytical solution, no limitations on the bar number, bar size, and spacing between adjacent bars are set. The convergence of the analytical solution is satisfactory, and the correctness of the analytical solution is confirmed by an independently developed multi-domain BEM (boundary element method) solution. Numerical examples are presented to examine the reflection and transmission coefficients of porous bars, CR and Cv, respectively, for engineering applications. The calculation results show that when the sum of widths for all the porous bars is fixed, increasing the bar number can significantly improve the sheltering function of the bars. Increasing the bar height can cause more wave energy dissipation and lower CR and Cr. The spacing between adjacent bars and the spacing between the last bar and the vertical wall are the key parameters affecting CR and Ct. The proposed analytical method may be used to analyze the hydrodynamic performance of submerged porous bars in preliminary engineering designs.展开更多
To improve the performance of the single layer flow insulation system utilizing open-cellular porous plate, the multilayer porous gas enthalpy-radiation converter is proposed and investigated experimentally and theore...To improve the performance of the single layer flow insulation system utilizing open-cellular porous plate, the multilayer porous gas enthalpy-radiation converter is proposed and investigated experimentally and theoretically. Two open-cellular porous materials with different porosity pore per inch and surface reflectivity have been examined. Each porous plate has the same thickness of a half of the single layer one. Both porous materials are not combined continuously but divided by free space. For the prediction model, two energy equations of the fluid and solid phases are employed, in which the convective heat transfer between both phases is described based on the empirical volumetric heat transfer coefficient. In addition, the radiative transfer equations are resolved by Pj approximation. When an equivalent blackbody radiation temperature of the radiation coming from the upstream region exceeds inlet gas temperature, use of a high reflective porous plate on the upstream side and a low reflective porous plate on the downstream side is quite effective to increase gas temperature drop across the converter. the multilayer porous converter should be made of pure scattering and porous layer, respectively. In order to obtain maximum gas temperature drop in that case, pure absorbing porous plate as the upstream and downstream展开更多
In case of accident at a nuclear power plant, water sources may not be available for a long period of time and the core heats up due to the residual power. Any attempt to inject water during core degradation can lead ...In case of accident at a nuclear power plant, water sources may not be available for a long period of time and the core heats up due to the residual power. Any attempt to inject water during core degradation can lead to quenching and further fragmentation of core material. The fragmentation of fuel rods and melting of reactor core materials may result in the formation of a "debris bed". The typical particle size in a debris bed might reach few millimeters (characteristic length-scale: 1-5 mm). The two-phase flow model for reflood of the degraded core is briefly introduced in this paper. It is implemented into the ICARE-CATHARE code, developed by IRSN (Institut de radioprotection et de surete nucleaire), to study severe accident scenarios in pressurized water reactors. Currently, the French IRSN sets up two experimental facilities to study debris bed reflooding, PEARL and PRELUDE, and validate safety models. The PRELUDE program studies the complex two phase flow (water/steam), in a porous medium (diameter 180 mm, height 200 mm), initially heated to a high temperature (400℃ or 700℃). On the basis of the experimental results, thermal hydraulic features at the quench front have been analyzed. The two-phase flow model shows a good agreement with PRELUDE experimental results.展开更多
We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization ...We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization and corrector results which generalize those by Donato and Nabil(2001).展开更多
文摘In this paper the theory analysis and the finite element analysis are carried out to investigate the strength of the thick plate which used as the top cover of High Pressure/High Temperature Heat Pipe Adibatic Reactor.The results show that the effect of holes on the plate is not enough to weaken the strength of this plate.
基金Supported by the National Natural Science Foundation of China(Grant No.21477022)
文摘Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blue and methyl orange)and tetracycline hydrochloride under visible-light irradiation(λ〉420 nm).Compared to bulk g-C3N4,porous g-C3N4exhibited much better capability for removing these contaminants,especially under visible-light irradiation,due to the enlarged specific surface area and more efficient separation of photogenerated charge carries.In particular,porous g-C3N4obtained by calcining bulk g-C3N4in air at 525℃ showed the highest visible-light-driven catalytic activity among these samples.Superoxide radical anions(·O2^-)were found to be the primary active species responsible for photodegradation.
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903 and 51279224.)
文摘This study examines oblique wave motion over multiple submerged porous bars in front of a vertical wall. Based on linear potential theory, an analytical solution for the present problem is developed using matched eigenfunction expansions. A complex dispersion relation is adopted to describe the wave elevation and energy dissipation over submerged porous bars. In the analytical solution, no limitations on the bar number, bar size, and spacing between adjacent bars are set. The convergence of the analytical solution is satisfactory, and the correctness of the analytical solution is confirmed by an independently developed multi-domain BEM (boundary element method) solution. Numerical examples are presented to examine the reflection and transmission coefficients of porous bars, CR and Cv, respectively, for engineering applications. The calculation results show that when the sum of widths for all the porous bars is fixed, increasing the bar number can significantly improve the sheltering function of the bars. Increasing the bar height can cause more wave energy dissipation and lower CR and Cr. The spacing between adjacent bars and the spacing between the last bar and the vertical wall are the key parameters affecting CR and Ct. The proposed analytical method may be used to analyze the hydrodynamic performance of submerged porous bars in preliminary engineering designs.
文摘To improve the performance of the single layer flow insulation system utilizing open-cellular porous plate, the multilayer porous gas enthalpy-radiation converter is proposed and investigated experimentally and theoretically. Two open-cellular porous materials with different porosity pore per inch and surface reflectivity have been examined. Each porous plate has the same thickness of a half of the single layer one. Both porous materials are not combined continuously but divided by free space. For the prediction model, two energy equations of the fluid and solid phases are employed, in which the convective heat transfer between both phases is described based on the empirical volumetric heat transfer coefficient. In addition, the radiative transfer equations are resolved by Pj approximation. When an equivalent blackbody radiation temperature of the radiation coming from the upstream region exceeds inlet gas temperature, use of a high reflective porous plate on the upstream side and a low reflective porous plate on the downstream side is quite effective to increase gas temperature drop across the converter. the multilayer porous converter should be made of pure scattering and porous layer, respectively. In order to obtain maximum gas temperature drop in that case, pure absorbing porous plate as the upstream and downstream
文摘In case of accident at a nuclear power plant, water sources may not be available for a long period of time and the core heats up due to the residual power. Any attempt to inject water during core degradation can lead to quenching and further fragmentation of core material. The fragmentation of fuel rods and melting of reactor core materials may result in the formation of a "debris bed". The typical particle size in a debris bed might reach few millimeters (characteristic length-scale: 1-5 mm). The two-phase flow model for reflood of the degraded core is briefly introduced in this paper. It is implemented into the ICARE-CATHARE code, developed by IRSN (Institut de radioprotection et de surete nucleaire), to study severe accident scenarios in pressurized water reactors. Currently, the French IRSN sets up two experimental facilities to study debris bed reflooding, PEARL and PRELUDE, and validate safety models. The PRELUDE program studies the complex two phase flow (water/steam), in a porous medium (diameter 180 mm, height 200 mm), initially heated to a high temperature (400℃ or 700℃). On the basis of the experimental results, thermal hydraulic features at the quench front have been analyzed. The two-phase flow model shows a good agreement with PRELUDE experimental results.
基金supported by National Natural Science Foundation of China(Grant No.11401595)
文摘We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization and corrector results which generalize those by Donato and Nabil(2001).