Let P(t) be a product of(possibly repeated) linear factors over Q and K/Q an abelian extension. Under a strict condition, we show that the Brauer-Manin obstruction to the Hasse principle and weak approximation is the ...Let P(t) be a product of(possibly repeated) linear factors over Q and K/Q an abelian extension. Under a strict condition, we show that the Brauer-Manin obstruction to the Hasse principle and weak approximation is the only one for any smooth proper model of the variety over Q defined by P(t) = NK/Q(x).展开更多
文摘Let P(t) be a product of(possibly repeated) linear factors over Q and K/Q an abelian extension. Under a strict condition, we show that the Brauer-Manin obstruction to the Hasse principle and weak approximation is the only one for any smooth proper model of the variety over Q defined by P(t) = NK/Q(x).