The kinetics of casein tryptic hydrolysis to prepare activepeptides was investigated. Taking into account the reaction mechanismincluding single substrate hydrolysis, irreversible enzymeinactivation, and substrate inh...The kinetics of casein tryptic hydrolysis to prepare activepeptides was investigated. Taking into account the reaction mechanismincluding single substrate hydrolysis, irreversible enzymeinactivation, and substrate inhibition, a set of exponentialequations was established to characterize the enzymatic hydrolysiscurves. The verification was carried out by a series of experimentalresults and indicated that the average regressive error was less than5/100. According to the proposed kinetic model, the kinetic constantsand thermodynamic constants of the reaction system were alsocalculated.展开更多
In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate con...In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate convexity-preserving in-terpolating transcendental curves;even constructing convexity-preserving interpolating polynomial curves,it is required to solve a system of equations or recur to a complicated iterative process. The method developed in this paper overcomes the above draw-backs. The basic idea is:first to construct a kind of trigonometric polynomial curves with a shape parameter,and interpolating trigonometric polynomial parametric curves with C2(or G1) continuity can be automatically generated without having to solve any system of equations or do any iterative computation. Then,the convexity of the constructed curves can be guaranteed by the appropriate value of the shape parameter. Performing the method is easy and fast,and the curvature distribution of the resulting interpolating curves is always well-proportioned. Several numerical examples are shown to substantiate that our algorithm is not only correct but also usable.展开更多
In this paper, a multiplicity-preserving triangular set decomposition algorithm is proposed for a system of two polynomials, which involves only computing the primitive polynomial remainder sequence of two polynomials...In this paper, a multiplicity-preserving triangular set decomposition algorithm is proposed for a system of two polynomials, which involves only computing the primitive polynomial remainder sequence of two polynomials once and certain GCD computations. The algorithm decomposes the unmixed variety defined by two polynomials into square free and disjoint (for non-vertical components, see Definition 4) algebraic cycles represented by triangular sets which may have negative multiplicities. Thus, the authors can count the multiplicities of the non-vertical components. In the bivariate case, the amthors give a complete algorithm to decompose tile system into zeros represented by triangular sets with multiplicities. The authors also analyze the complexity of the algorithm in the bivariate ease. The authors implement the algorithm and show the effectiveness of the method with extensive experiments.展开更多
The integrable properties of the spheroidal equations are investigated. The shape-invariance property is proved to be retained for the spheroidal equations, for which the recurrence relations are obtained. This is the...The integrable properties of the spheroidal equations are investigated. The shape-invariance property is proved to be retained for the spheroidal equations, for which the recurrence relations are obtained. This is the extension of the recurrence relation of the Legendre polynomials.展开更多
In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the ...In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the Hirota direct method and the Riemann theta function, respectively. And then the asymptotic analysis demonstrates one periodic wave solution can be reduced to one soliton solution. In the end, the bilinear Backlund transformations are derived.展开更多
Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried ...Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried out in the field of nonlinear differential-difference equations,the majority of the results deal with polynomial types.Limited research has been reported regarding such equations of rational type.In this paper we present an adaptation of the(G /G)-expansion method to solve nonlinear rational differential-difference equations.The procedure is demonstrated using two distinct equations.Our approach allows one to construct three types of exact traveling wave solutions(hyperbolic,trigonometric,and rational) by means of the simplified form of the auxiliary equation method with reduced parameters.Our analysis leads to analytic solutions in terms of topological solitons and singular periodic functions as well.展开更多
Based on Wu's elimination method and "divide-and-conquer" strategy, the undetermined coefficient algorithm to construct polynomial form conservation laws for nonlinear differential-difference equations (DDEs) is ...Based on Wu's elimination method and "divide-and-conquer" strategy, the undetermined coefficient algorithm to construct polynomial form conservation laws for nonlinear differential-difference equations (DDEs) is improved. Furthermore, a Maple package named CLawDDEs, which can entirely automatically derive polynomial form conservation laws of nonlinear DDEs is presented. The effective- ness of CLawDDEs is demonstrated by application to different kinds of examples.展开更多
基金Supported by National Natural Science Foundation of China (No. 20276052) and Tianjin Science & Technology Commission (No. 023105411).
文摘The kinetics of casein tryptic hydrolysis to prepare activepeptides was investigated. Taking into account the reaction mechanismincluding single substrate hydrolysis, irreversible enzymeinactivation, and substrate inhibition, a set of exponentialequations was established to characterize the enzymatic hydrolysiscurves. The verification was carried out by a series of experimentalresults and indicated that the average regressive error was less than5/100. According to the proposed kinetic model, the kinetic constantsand thermodynamic constants of the reaction system were alsocalculated.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719400)the National Natural Science Founda-tion of China (Nos. 60673031 and 60333010) the National Natural Science Foundation for Innovative Research Groups of China (No. 60021201)
文摘In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate convexity-preserving in-terpolating transcendental curves;even constructing convexity-preserving interpolating polynomial curves,it is required to solve a system of equations or recur to a complicated iterative process. The method developed in this paper overcomes the above draw-backs. The basic idea is:first to construct a kind of trigonometric polynomial curves with a shape parameter,and interpolating trigonometric polynomial parametric curves with C2(or G1) continuity can be automatically generated without having to solve any system of equations or do any iterative computation. Then,the convexity of the constructed curves can be guaranteed by the appropriate value of the shape parameter. Performing the method is easy and fast,and the curvature distribution of the resulting interpolating curves is always well-proportioned. Several numerical examples are shown to substantiate that our algorithm is not only correct but also usable.
基金partially supported by NKBRPC under Grant No.2011CB302400the National Natural Science Foundation of China under Grant Nos.11001258,60821002,91118001+1 种基金SRF for ROCS,SEMChina-France cooperation project EXACTA under Grant No.60911130369
文摘In this paper, a multiplicity-preserving triangular set decomposition algorithm is proposed for a system of two polynomials, which involves only computing the primitive polynomial remainder sequence of two polynomials once and certain GCD computations. The algorithm decomposes the unmixed variety defined by two polynomials into square free and disjoint (for non-vertical components, see Definition 4) algebraic cycles represented by triangular sets which may have negative multiplicities. Thus, the authors can count the multiplicities of the non-vertical components. In the bivariate case, the amthors give a complete algorithm to decompose tile system into zeros represented by triangular sets with multiplicities. The authors also analyze the complexity of the algorithm in the bivariate ease. The authors implement the algorithm and show the effectiveness of the method with extensive experiments.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10875018 and 10773002)
文摘The integrable properties of the spheroidal equations are investigated. The shape-invariance property is proved to be retained for the spheroidal equations, for which the recurrence relations are obtained. This is the extension of the recurrence relation of the Legendre polynomials.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10735030 and 11075055Innovative Research Team Program of the National Natural Science Foundation of China under Grant No. 61021004
文摘In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the Hirota direct method and the Riemann theta function, respectively. And then the asymptotic analysis demonstrates one periodic wave solution can be reduced to one soliton solution. In the end, the bilinear Backlund transformations are derived.
文摘Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried out in the field of nonlinear differential-difference equations,the majority of the results deal with polynomial types.Limited research has been reported regarding such equations of rational type.In this paper we present an adaptation of the(G /G)-expansion method to solve nonlinear rational differential-difference equations.The procedure is demonstrated using two distinct equations.Our approach allows one to construct three types of exact traveling wave solutions(hyperbolic,trigonometric,and rational) by means of the simplified form of the auxiliary equation method with reduced parameters.Our analysis leads to analytic solutions in terms of topological solitons and singular periodic functions as well.
基金supported by the National Natural Science Foundation of China under Grant Nos.10771072 and 11071274
文摘Based on Wu's elimination method and "divide-and-conquer" strategy, the undetermined coefficient algorithm to construct polynomial form conservation laws for nonlinear differential-difference equations (DDEs) is improved. Furthermore, a Maple package named CLawDDEs, which can entirely automatically derive polynomial form conservation laws of nonlinear DDEs is presented. The effective- ness of CLawDDEs is demonstrated by application to different kinds of examples.