In allusion to the characteristics of the open complex giant system, an open multilevel hierarchic intelligent control system is established for the eco-industrial system. With the idea of the open engineering system,...In allusion to the characteristics of the open complex giant system, an open multilevel hierarchic intelligent control system is established for the eco-industrial system. With the idea of the open engineering system, using the hall for workshop of metasynthetic engineering (HWME), intelligent control techniques, the expert system and the design of experiments are integrated within the framework of the nonlinear multiobjective decision support system to develop a robust, top-level design specification so as to make the system have the quality of adaptive control, self-organizing, self-learning and robustness. Finally, an illustrative example is given to clarify the effectiveness of the method.展开更多
In mine ventilation networks, the reasonable airflow distribution is very important for the production safety and economy. Three basic problems of the natural, full-controlled and semi-controlled splitting were review...In mine ventilation networks, the reasonable airflow distribution is very important for the production safety and economy. Three basic problems of the natural, full-controlled and semi-controlled splitting were reviewed in the paper. Aiming at the high difficulty semi-controlled splitting problem, the general nonlinear multi-objectives optimization mathematical model with constraints was established based on the theory of mine ventilation networks. A new algorithm, which combined the improved differential evaluation and the critical path method (CPM) based on the multivariable separate solution strategy, was put forward to search for the global optimal solution more efficiently. In each step of evolution, the feasible solutions of air quantity distribution are firstly produced by the improved differential evolu- tion algorithm, and then the optimal solutions of regulator pressure drop are obtained by the CPM. Through finite steps iterations, the optimal solution can be given. In this new algorithm, the population of feasible solutions were sorted and grouped for enhancing the global search ability and the individuals in general group were randomly initialized for keeping diversity. Meanwhile, the individual neighbor- hood in the fine group which may be closely to the optimal solutions were searched locally and slightly for achieving a balance between global searching and local searching, thus improving the convergence rate. The computer program was developed based on this method. Finally, the two ventilation networks with single-fan and multi-fans were solved. The results show that this algorithm has advantages of high effectiveness, fast convergence, good robustness and flexibility. This computer program could be used to solve lar^e-scale ~eneralized ventilation networks o^timization problem in the future.展开更多
Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is ...Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.展开更多
A multi-objective performance optimization method is proposed, and the problem that single structural parame- ters of small fan balance the optimization between the static characteristics and the aerodynamic noise is ...A multi-objective performance optimization method is proposed, and the problem that single structural parame- ters of small fan balance the optimization between the static characteristics and the aerodynamic noise is solved. In this method, three structural parameters are selected as the optimization variables. Besides, the static pressure efficiency and the aerodynamic noise of the fan are regarded as the multi-objective performance. Furthermore, the response surface method and the entropy method are used to establish the optimization function between the op- timization variables and the multi-objective performances. Finally, the optimized model is found when the opti- mization function reaches its maximttm value. Experimental data shows that the optimized model not only en- hances the static characteristics of the fan but also obviously reduces the noise. The results of the study will provide some reference for the optimization of multi-objective performance of other types of rotating machinery.展开更多
文摘In allusion to the characteristics of the open complex giant system, an open multilevel hierarchic intelligent control system is established for the eco-industrial system. With the idea of the open engineering system, using the hall for workshop of metasynthetic engineering (HWME), intelligent control techniques, the expert system and the design of experiments are integrated within the framework of the nonlinear multiobjective decision support system to develop a robust, top-level design specification so as to make the system have the quality of adaptive control, self-organizing, self-learning and robustness. Finally, an illustrative example is given to clarify the effectiveness of the method.
基金financially supported by the National Natural Science Foundation of China (No. 51134023)
文摘In mine ventilation networks, the reasonable airflow distribution is very important for the production safety and economy. Three basic problems of the natural, full-controlled and semi-controlled splitting were reviewed in the paper. Aiming at the high difficulty semi-controlled splitting problem, the general nonlinear multi-objectives optimization mathematical model with constraints was established based on the theory of mine ventilation networks. A new algorithm, which combined the improved differential evaluation and the critical path method (CPM) based on the multivariable separate solution strategy, was put forward to search for the global optimal solution more efficiently. In each step of evolution, the feasible solutions of air quantity distribution are firstly produced by the improved differential evolu- tion algorithm, and then the optimal solutions of regulator pressure drop are obtained by the CPM. Through finite steps iterations, the optimal solution can be given. In this new algorithm, the population of feasible solutions were sorted and grouped for enhancing the global search ability and the individuals in general group were randomly initialized for keeping diversity. Meanwhile, the individual neighbor- hood in the fine group which may be closely to the optimal solutions were searched locally and slightly for achieving a balance between global searching and local searching, thus improving the convergence rate. The computer program was developed based on this method. Finally, the two ventilation networks with single-fan and multi-fans were solved. The results show that this algorithm has advantages of high effectiveness, fast convergence, good robustness and flexibility. This computer program could be used to solve lar^e-scale ~eneralized ventilation networks o^timization problem in the future.
文摘Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.
基金supported by Open Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical EngineeringZhejiang Sci-Tech University Key Laboratory(ZSTUME 01A04)
文摘A multi-objective performance optimization method is proposed, and the problem that single structural parame- ters of small fan balance the optimization between the static characteristics and the aerodynamic noise is solved. In this method, three structural parameters are selected as the optimization variables. Besides, the static pressure efficiency and the aerodynamic noise of the fan are regarded as the multi-objective performance. Furthermore, the response surface method and the entropy method are used to establish the optimization function between the op- timization variables and the multi-objective performances. Finally, the optimized model is found when the opti- mization function reaches its maximttm value. Experimental data shows that the optimized model not only en- hances the static characteristics of the fan but also obviously reduces the noise. The results of the study will provide some reference for the optimization of multi-objective performance of other types of rotating machinery.