Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ...A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.展开更多
Security analysis of public-key cryptosystems is of fundamental significance for both theoretical research and applications in cryptography. In particular, the security of widely used public-key cryptosystems merits d...Security analysis of public-key cryptosystems is of fundamental significance for both theoretical research and applications in cryptography. In particular, the security of widely used public-key cryptosystems merits deep research to protect against new types of attacks. It is therefore highly meaningful to research cryptanalysis in the quantum computing environment. Shor proposed a wellknown factoring algorithm by finding the prime factors of a number n =pq, which is exponentially faster than the best known classical algorithm. The idea behind Shor's quantum factoring algorithm is a straightforward programming consequence of the following proposition: to factor n, it suffices to find the order r; once such an r is found, one can compute gcd( a^(r/2) ±1, n)=p or q. For odd values of r it is assumed that the factors of n cannot be found(since a^(r/2) is not generally an integer). That is, the order r must be even. This restriction can be removed, however, by working from another angle. Based on the quantum inverse Fourier transform and phase estimation, this paper presents a new polynomial-time quantum algorithm for breaking RSA, without explicitly factoring the modulus n. The probability of success of the new algorithm is greater than 4φ( r)/π~2 r, exceeding that of the existing quantum algorithm forattacking RSA based on factorization. In constrast to the existing quantum algorithm for attacking RSA, the order r of the fixed point C for RSA does not need to be even. It changed the practices that cryptanalysts try to recover the private-key, directly from recovering the plaintext M to start, a ciphertext-only attack attacking RSA is proposed.展开更多
Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of se...Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.展开更多
To protect against algebraic attacks, a high algebraic immunity is now an important criterion for Boolean functions used in stream ciphers. In this paper, a new method based on a univariate polynomial representation o...To protect against algebraic attacks, a high algebraic immunity is now an important criterion for Boolean functions used in stream ciphers. In this paper, a new method based on a univariate polynomial representation of Boolean functions is proposed. The proposed method is used to constmct Boolean functions with an odd number of variables and with maximum algebraic immunity. We also discuss the nonlinearity of the constructed functions. Moreover, a lower bound is deter- mined for the number of Boolean functions with rmximum algebraic immunity.展开更多
This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consen...This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consensus problem of missiles' time-to-go estimates, this paper formulates it as the consensus problem of missiles' ranges-to-go. Based on this strategy, novel distributed guidance laws are proposed to solve the simultaneous attack problem with the target of unknown maneuverability.Adaptive control method is introduced to estimate the upper bound of the target's acceleration. The effectiveness of the proposed guidance laws is verified both theoretically and numerically.展开更多
The security of cryptographic systems is a major concern for cryptosystem designers, even though cryptography algorithms have been improved. Side-channel attacks, by taking advantage of physical vulnerabilities of cry...The security of cryptographic systems is a major concern for cryptosystem designers, even though cryptography algorithms have been improved. Side-channel attacks, by taking advantage of physical vulnerabilities of cryptosystems, aim to gain secret information. Several approaches have been proposed to analyze side-channel information, among which machine learning is known as a promising method. Machine learning in terms of neural networks learns the signature (power consumption and electromagnetic emission) of an instruction, and then recognizes it automatically. In this paper, a novel experimental investigation was conducted on field-programmable gate array (FPGA) implementation of elliptic curve cryptography (ECC), to explore the efficiency of side-channel information characterization based on a learning vector quantization (LVQ) neural network. The main characteristics of LVQ as a multi-class classifier are that it has the ability to learn complex non-linear input-output relationships, use sequential training procedures, and adapt to the data. Experimental results show the performance of multi-class classification based on LVQ as a powerful and promising approach of side-channel data characterization.展开更多
Aquatic biodiversity is being lost at an unprecedented rate. One factor driving this loss is increased turbidity, an en- vironmental stressor that can impose behavioral, morphological, and/or physiological costs on fi...Aquatic biodiversity is being lost at an unprecedented rate. One factor driving this loss is increased turbidity, an en- vironmental stressor that can impose behavioral, morphological, and/or physiological costs on fishes. Here we describe the be- havioral response of a widespread African cichlid, Pseudocrenilabrus multicolor victoriae, to turbidity. We used a split-brood rearing design to test if F1 offspring reared in turbid water, originating from river (turbid) and swamp (clear) populations, behave differently than full-sibs reared in clear water. We examined two facets of behavior: (1) behaviors of fish in full sib groups, in- eluding activity level and social dynamics collected during the rearing period; and (2) male aggressive behavior directed at poten- tial male competitors after fish had reached maturity; this was done in an experimental set-up independent of the rearing aquaria. Regardless of population of origin, fish reared in turbid water were marginally less active and performed fewer social behaviors than those reared in clear water. On the other hand, when tested against a competitor in turbid water, males performed more ag- gressive behaviors, regardless of population of origin or rearing environment, Our results suggest a plastic behavioral response to turbidity that may allow P. multicolor to persist over a range of turbidity levels in nature by decreasing activity and general social behaviors and intensifying reproductive behaviors to ensure reproductive success [Current Zoology 58 (1): 146-157, 2012].展开更多
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
文摘A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.
基金partially supported by he State Key Program of National Natural Science of China No. 61332019Major State Basic Research Development Program of China (973 Program) No. 2014CB340601+1 种基金the National Science Foundation of China No. 61202386, 61402339the National Cryptography Development Fund No. MMJJ201701304
文摘Security analysis of public-key cryptosystems is of fundamental significance for both theoretical research and applications in cryptography. In particular, the security of widely used public-key cryptosystems merits deep research to protect against new types of attacks. It is therefore highly meaningful to research cryptanalysis in the quantum computing environment. Shor proposed a wellknown factoring algorithm by finding the prime factors of a number n =pq, which is exponentially faster than the best known classical algorithm. The idea behind Shor's quantum factoring algorithm is a straightforward programming consequence of the following proposition: to factor n, it suffices to find the order r; once such an r is found, one can compute gcd( a^(r/2) ±1, n)=p or q. For odd values of r it is assumed that the factors of n cannot be found(since a^(r/2) is not generally an integer). That is, the order r must be even. This restriction can be removed, however, by working from another angle. Based on the quantum inverse Fourier transform and phase estimation, this paper presents a new polynomial-time quantum algorithm for breaking RSA, without explicitly factoring the modulus n. The probability of success of the new algorithm is greater than 4φ( r)/π~2 r, exceeding that of the existing quantum algorithm forattacking RSA based on factorization. In constrast to the existing quantum algorithm for attacking RSA, the order r of the fixed point C for RSA does not need to be even. It changed the practices that cryptanalysts try to recover the private-key, directly from recovering the plaintext M to start, a ciphertext-only attack attacking RSA is proposed.
基金supported by the National Natural Science Foundation of China under Grant No.60903166 the National High Technology Research and Development Program of China(863 Program) under Grants No.2012AA012506,No.2012AA012901,No.2012AA012903+9 种基金 Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20121103120032 the Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant No.13YJCZH065 the Opening Project of Key Lab of Information Network Security of Ministry of Public Security(The Third Research Institute of Ministry of Public Security) under Grant No.C13613 the China Postdoctoral Science Foundation General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No.km201410005012 the Research on Education and Teaching of Beijing University of Technology under Grant No.ER2013C24 the Beijing Municipal Natural Science Foundation Sponsored by Hunan Postdoctoral Scientific Program Open Research Fund of Beijing Key Laboratory of Trusted Computing Funds for the Central Universities, Contract No.2012JBM030
文摘Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.
基金This work was supported by the National Natural Science Foundation of China under Grants No. 61103191, No. 61070215 the Funds of Key Lab of Fujian Province University Network Security and Cryptology under Crant No. 2011003 and the Open Research Fund of State Key Laboratory of Inforrmtion Security.
文摘To protect against algebraic attacks, a high algebraic immunity is now an important criterion for Boolean functions used in stream ciphers. In this paper, a new method based on a univariate polynomial representation of Boolean functions is proposed. The proposed method is used to constmct Boolean functions with an odd number of variables and with maximum algebraic immunity. We also discuss the nonlinearity of the constructed functions. Moreover, a lower bound is deter- mined for the number of Boolean functions with rmximum algebraic immunity.
基金supported by the National Natural Science Foundation of China under Grant Nos.61473005,11332001,and 61471242the Research Project Fund under Grant No.17-163-11-ZT-003-018-01+2 种基金the Air Force Advance Research Fund under Grant No.303020503the Joint Fund of Equipment development and Aerospace Science and Technology under Grant No.6141B0624050101the National Defense Basic Scientific Research Program(Major)of China
文摘This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consensus problem of missiles' time-to-go estimates, this paper formulates it as the consensus problem of missiles' ranges-to-go. Based on this strategy, novel distributed guidance laws are proposed to solve the simultaneous attack problem with the target of unknown maneuverability.Adaptive control method is introduced to estimate the upper bound of the target's acceleration. The effectiveness of the proposed guidance laws is verified both theoretically and numerically.
文摘The security of cryptographic systems is a major concern for cryptosystem designers, even though cryptography algorithms have been improved. Side-channel attacks, by taking advantage of physical vulnerabilities of cryptosystems, aim to gain secret information. Several approaches have been proposed to analyze side-channel information, among which machine learning is known as a promising method. Machine learning in terms of neural networks learns the signature (power consumption and electromagnetic emission) of an instruction, and then recognizes it automatically. In this paper, a novel experimental investigation was conducted on field-programmable gate array (FPGA) implementation of elliptic curve cryptography (ECC), to explore the efficiency of side-channel information characterization based on a learning vector quantization (LVQ) neural network. The main characteristics of LVQ as a multi-class classifier are that it has the ability to learn complex non-linear input-output relationships, use sequential training procedures, and adapt to the data. Experimental results show the performance of multi-class classification based on LVQ as a powerful and promising approach of side-channel data characterization.
文摘Aquatic biodiversity is being lost at an unprecedented rate. One factor driving this loss is increased turbidity, an en- vironmental stressor that can impose behavioral, morphological, and/or physiological costs on fishes. Here we describe the be- havioral response of a widespread African cichlid, Pseudocrenilabrus multicolor victoriae, to turbidity. We used a split-brood rearing design to test if F1 offspring reared in turbid water, originating from river (turbid) and swamp (clear) populations, behave differently than full-sibs reared in clear water. We examined two facets of behavior: (1) behaviors of fish in full sib groups, in- eluding activity level and social dynamics collected during the rearing period; and (2) male aggressive behavior directed at poten- tial male competitors after fish had reached maturity; this was done in an experimental set-up independent of the rearing aquaria. Regardless of population of origin, fish reared in turbid water were marginally less active and performed fewer social behaviors than those reared in clear water. On the other hand, when tested against a competitor in turbid water, males performed more ag- gressive behaviors, regardless of population of origin or rearing environment, Our results suggest a plastic behavioral response to turbidity that may allow P. multicolor to persist over a range of turbidity levels in nature by decreasing activity and general social behaviors and intensifying reproductive behaviors to ensure reproductive success [Current Zoology 58 (1): 146-157, 2012].