期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多攻击线引起的串扰时延故障的TPG 被引量:3
1
作者 颜学龙 梁晓琳 尚玉玲 《微电子学与计算机》 CSCD 北大核心 2008年第11期153-156,共4页
探讨了一种串扰时延最大化算法,并且利用被修改的FAN算法,生成测试矢量.对于一条敏化通路,利用被修改的FAN算法适当地激活相应的攻击线和受害线,使电路在最恶劣情况下引起最大通路时延,从而实现更有效的时延测试.利用了FAN算法的多路回... 探讨了一种串扰时延最大化算法,并且利用被修改的FAN算法,生成测试矢量.对于一条敏化通路,利用被修改的FAN算法适当地激活相应的攻击线和受害线,使电路在最恶劣情况下引起最大通路时延,从而实现更有效的时延测试.利用了FAN算法的多路回退和回溯等主要特色,提高了测试生成算法的效率.实验结果表明,沿着任何临界通路传播的受害线相耦合的攻击线被适当地激活,并且可以对一定规模的电路的串扰时延故障进行测试矢量生成. 展开更多
关键词 时延故障 多攻击线 自动测试矢量生成 FAN算法
下载PDF
基于MAF模型的串扰时延故障的测试矢量生成 被引量:3
2
作者 颜学龙 梁晓琳 尚玉玲 《计算机工程与应用》 CSCD 北大核心 2009年第19期62-65,共4页
随着深亚微米技术,串扰噪声问题越来越严重。利用MAF模型的基本思想,探讨了一种串扰时延最大化算法,并且利用被修改的FAN算法,生成测试矢量。对于一条敏化通路,利用被修改的FAN算法适当地激活相应的攻击线和受害线,使电路在最恶劣情况... 随着深亚微米技术,串扰噪声问题越来越严重。利用MAF模型的基本思想,探讨了一种串扰时延最大化算法,并且利用被修改的FAN算法,生成测试矢量。对于一条敏化通路,利用被修改的FAN算法适当地激活相应的攻击线和受害线,使电路在最恶劣情况下引起最大通路时延,从而实现更有效的时延测试。在标准电路ISCAS’85上进行实验验证,结果表明:该算法对于多攻击线的串扰时延故障的测试矢量产生是有效的。 展开更多
关键词 时延故障 多攻击线 最大攻击线故障模型 测试矢量生成 FAN算法
下载PDF
Side-channel attacks and learning-vector quantization
3
作者 Ehsan SAEEDI Yinan KONG Md. Selim HOSSAIN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第4期511-518,共8页
The security of cryptographic systems is a major concern for cryptosystem designers, even though cryptography algorithms have been improved. Side-channel attacks, by taking advantage of physical vulnerabilities of cry... The security of cryptographic systems is a major concern for cryptosystem designers, even though cryptography algorithms have been improved. Side-channel attacks, by taking advantage of physical vulnerabilities of cryptosystems, aim to gain secret information. Several approaches have been proposed to analyze side-channel information, among which machine learning is known as a promising method. Machine learning in terms of neural networks learns the signature (power consumption and electromagnetic emission) of an instruction, and then recognizes it automatically. In this paper, a novel experimental investigation was conducted on field-programmable gate array (FPGA) implementation of elliptic curve cryptography (ECC), to explore the efficiency of side-channel information characterization based on a learning vector quantization (LVQ) neural network. The main characteristics of LVQ as a multi-class classifier are that it has the ability to learn complex non-linear input-output relationships, use sequential training procedures, and adapt to the data. Experimental results show the performance of multi-class classification based on LVQ as a powerful and promising approach of side-channel data characterization. 展开更多
关键词 Side-channel attacks Elliptic curve cryptography Multi-class classification Learning vector auantization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部