期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
利用Excel的宏功能实现多数据类型单元格中纯数字的提取 被引量:2
1
作者 高楠 李红霞 《计算机产品与流通》 2017年第9期197-197,共1页
Excel是使用非常广泛的办公软件体系之一,利用VBA技术,自定义Excel函数,实现对Excel中大量多数据类型混搭单元格中的数据,进行纯数字的提取操作实现。
关键词 VBA 多数据类型 提取 纯数字
下载PDF
基于MetaFile图元文件的数据集成显示与打印 被引量:1
2
作者 金百东 《计算机应用与软件》 CSCD 北大核心 2007年第6期93-94,共2页
论述了多数据类型下利用MetaFile图元文件实现集成显示的原理,巧妙利用Windows打印体系实现了集成输出。指出:MetaFile元文件的应用,屏蔽了不同业务数据之间的差异,是实现集成显示与打印的重要方法。
关键词 MetaFile 多数据类型 集成显示与打印
下载PDF
Aerosol Type Identification Using PARASOL Multichannel Polarized Data 被引量:2
3
作者 FAN Xue-Hua CHEN Hong-Bin 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第3期224-229,共6页
PARASOL(Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) multi-channel and multi-directional polarized data for different aerosol types were compared.The P... PARASOL(Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) multi-channel and multi-directional polarized data for different aerosol types were compared.The PARASOL polarized radiance data at 490 nm,670 nm,and 865 nm increased with aerosol optical thickness(AOT) for fine-mode aerosols;however,the polarized radiances at 490 nm and 670 nm decreased as AOT increased for coarse dust aerosols.Thus,the variation of the polarized radiance with AOT can be used to identify fine or coarse particle-dominated aerosols.Polarized radiances at three wavelengths for fine-and coarse-mode aerosols were analyzed and fitted by linear regression.The slope of the line for 670 nm and 490 nm wavelength pairs is less than 0.35 for dust aerosols.However,the value for fine-mode aerosols is greater than 0.60.The Support Vector Machine method(SVM) based on 12 vector features was used to discriminate clear sky,coarse dust aerosols,fine-mode aerosols,and cloud.Two cases were given and validated by AErosol RObotic NETwork(AERONET) measurements,MODIS(Moderate Resolution Imaging Spectroradiometer) FMF(Fine Mode Fraction at 550 nm) images,PARASOL RGB(Red Green Blue) images,and CALIOP(Cloud-Aerosol Lidar with Orthogonal Polarization) VFM(Vertical Feature Mask) data. 展开更多
关键词 aerosol typePARASOLpolarized data support vector machine
下载PDF
又一把注入利刃CnSafersr
4
作者 SYKKKTOOL 《黑客防线》 2004年第12期61-62,共2页
星期六的晚上,朋友发来一个内部测试的SQL注入软件,叫帮他测试下找出不足和给些意见,正好没有什么事情做,就答应下来了。
关键词 SQL注入软件 脚本入侵 CnSafersr 多语言多数据类型 权限
原文传递
A multi-resolution global land cover dataset through multisource data aggregation 被引量:24
5
作者 YU Le WANG Jie +3 位作者 LI XueCao LI CongCong ZHAO YuanYuan GONG Peng 《Science China Earth Sciences》 SCIE EI CAS 2014年第10期2317-2329,共13页
Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from... Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover map- ping and impact analysis of spatial resolution on area estimation for different land cover types. We proposed a set of methods to aggregate two existing 30 m resolution circa 2010 global land cover maps, namely FROM-GLC (Finer Resolution Observa- tion and Monitoring-Global Land Cover) and FROM-GLC-seg (Segmentation), with two coarser resolution global maps on development, i.e., Nighttime Light Impervious Surface Area (NL-ISA) and MODIS urban extent (MODIS-urban), to produce an improved 30 m global land cover map-FROM-GLC-agg (Aggregation). It was pos-processed using additional coarse res- olution datasets (i.e., MCD12Q1, GlobCover2009, MOD44W etc.) to reduce land cover type confusion. Around 98.9% pixels remain 30 m resolution after some post-processing to this dataset. Based on this map, majority aggregation and proportion ag- gregation approaches were employed to create a multi-resolution hierarchy (i.e., 250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 km, 100 km) of land cover maps to meet requirements for different resolutions from different applications. Through accuracy assessment, we found that the best overall accuracies for the post-processed base map (at 30 m) and the three maps subse- quently aggregated at 250 m, 500 m, 1 km resolutions are 69.50%, 76.65%, 74.65%, and 73.47%, respectively. Our analysis of area-estimation biases for different land cover types at different resolutions suggests that maps at coarser than 5 km resolution contain at least 5% area estimation error for most land cover types. Proportion layers, which contain precise information on land cover percentage, are suggested for use when coarser resolution land cover data are required. 展开更多
关键词 spatial aggregation LANDSAT MODIS BIODIVERSITY climate change MULTI-RESOLUTION majority vote
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部