期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多数据集深度学习模型的修图处理识别
被引量:
4
1
作者
杨滨
陈先意
《计算机科学与探索》
CSCD
北大核心
2020年第2期252-259,共8页
图像处理软件的飞速发展,带动了移动应用领域一大批修图、美化应用的兴起。但是修图、美化软件的快速发展和普及也带来了一些社会问题和安全问题,如网恋对象严重失真,摄影作品造假等。针对手机中的修图处理APP软件,提出一种基于多数据...
图像处理软件的飞速发展,带动了移动应用领域一大批修图、美化应用的兴起。但是修图、美化软件的快速发展和普及也带来了一些社会问题和安全问题,如网恋对象严重失真,摄影作品造假等。针对手机中的修图处理APP软件,提出一种基于多数据集特征学习的神经网络模型,并给出其网络拓扑结构。区别于传统的多个神经网络并行操作,提出的网络模型具有共享模型参数的特征,能同时对多个特征数据集进行深度学习,使检测程序具备多特征识别能力。此外,还提出了一种针对多任务网络模型的损失函数,以增强深度特征学习的能力。实验结果表明,提出方法的准确率较传统方法有较大提升,同时泛化性能优越,能识别出经过多种美图、修图软件修复过的图像。
展开更多
关键词
多数据集学习
修图识别
深度
学习
神经网络设计
图像处理
下载PDF
职称材料
广义多线性混合效应模型
被引量:
1
2
作者
李超
郭黎利
窦峥
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2018年第5期934-940,共7页
为了解决多数据集间联合特征提取时数据分布多样、集间相关性结构复杂和共享特征方法多样的问题,本文提出了广义多线性混合效应模型。作为一种非监督多数据集特征提取方法,本算法可挖掘多个数据集之间的共享信息,实现对多数据集全局、...
为了解决多数据集间联合特征提取时数据分布多样、集间相关性结构复杂和共享特征方法多样的问题,本文提出了广义多线性混合效应模型。作为一种非监督多数据集特征提取方法,本算法可挖掘多个数据集之间的共享信息,实现对多数据集全局、局部和个体特征的提取。本算法利用了传统的广义线性模型,使其可以处理不同分布的张量数据集;并提出了一种基于超图的关系模型。该模型利用关系矩阵可以实现对数据集间相关结构的建模;通过提出辅助模式的概念,实现了特征的自动归类。数值实验结果表明:利用本算法提取的特征不仅反映了多数据集间的共同与个体信息,并且在人脸识别和推荐系统等问题中性能优于传统算法。
展开更多
关键词
广义线性模型
张量分解
特征提取
多数据集学习
超图模型
下载PDF
职称材料
题名
多数据集深度学习模型的修图处理识别
被引量:
4
1
作者
杨滨
陈先意
机构
江南大学设计学院
江南大学轻工过程先进控制教育部重点实验室
南京信息工程大学计算机与软件学院
出处
《计算机科学与探索》
CSCD
北大核心
2020年第2期252-259,共8页
基金
国家自然科学基金No.61602253
教育部人文社科基金No.18YJC760112
+1 种基金
江苏省人文社科基金No.18YSD002
江苏高校哲学社会科学研究项目No.2015SJD344~~
文摘
图像处理软件的飞速发展,带动了移动应用领域一大批修图、美化应用的兴起。但是修图、美化软件的快速发展和普及也带来了一些社会问题和安全问题,如网恋对象严重失真,摄影作品造假等。针对手机中的修图处理APP软件,提出一种基于多数据集特征学习的神经网络模型,并给出其网络拓扑结构。区别于传统的多个神经网络并行操作,提出的网络模型具有共享模型参数的特征,能同时对多个特征数据集进行深度学习,使检测程序具备多特征识别能力。此外,还提出了一种针对多任务网络模型的损失函数,以增强深度特征学习的能力。实验结果表明,提出方法的准确率较传统方法有较大提升,同时泛化性能优越,能识别出经过多种美图、修图软件修复过的图像。
关键词
多数据集学习
修图识别
深度
学习
神经网络设计
图像处理
Keywords
multi-dataset learning
image modification recognition
deep learning
design of neural network
image processing
分类号
TP309 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
广义多线性混合效应模型
被引量:
1
2
作者
李超
郭黎利
窦峥
机构
哈尔滨工程大学信息与通信工程学院
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2018年第5期934-940,共7页
基金
国家自然科学基金项目(61671167)
文摘
为了解决多数据集间联合特征提取时数据分布多样、集间相关性结构复杂和共享特征方法多样的问题,本文提出了广义多线性混合效应模型。作为一种非监督多数据集特征提取方法,本算法可挖掘多个数据集之间的共享信息,实现对多数据集全局、局部和个体特征的提取。本算法利用了传统的广义线性模型,使其可以处理不同分布的张量数据集;并提出了一种基于超图的关系模型。该模型利用关系矩阵可以实现对数据集间相关结构的建模;通过提出辅助模式的概念,实现了特征的自动归类。数值实验结果表明:利用本算法提取的特征不仅反映了多数据集间的共同与个体信息,并且在人脸识别和推荐系统等问题中性能优于传统算法。
关键词
广义线性模型
张量分解
特征提取
多数据集学习
超图模型
Keywords
generalized linear model
tensor decomposition
feature extraction
multiblock learning
hypergraph model
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多数据集深度学习模型的修图处理识别
杨滨
陈先意
《计算机科学与探索》
CSCD
北大核心
2020
4
下载PDF
职称材料
2
广义多线性混合效应模型
李超
郭黎利
窦峥
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2018
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部