目的针对图割(GrabCut)算法对于前景与背景颜色特征相差不大容易发生分割错误,SLIC(simple linear iterative clustering)预分割在对应情况下边缘不够准确以及时间复杂度较高等问题,提出一种融合特征的自适应超像素GrabCut算法。方法该...目的针对图割(GrabCut)算法对于前景与背景颜色特征相差不大容易发生分割错误,SLIC(simple linear iterative clustering)预分割在对应情况下边缘不够准确以及时间复杂度较高等问题,提出一种融合特征的自适应超像素GrabCut算法。方法该算法首先将图像转化到Lab色彩空间,并对原图像提取Gabor纹理特征,综合得到融合特征;再利用融合特征改进SLIC方法,使用改进方法对图像进行预分割,提取超像素区域,构建区域邻接图;然后保存每个超像素区域的融合特征,对两种特征分别进行高斯混合模型(Gaussian mixture model,简称GMM)建模,并利用相对熵自适应调整分割过程中混合特征的权重,优化Gibbs能量函数;最后执行迭代图割算法,得出分割结果。结论实验结果表明,本算法对颜色特征不佳的情况下有较好的分割效果,并通过改进的SLIC预分割提高了算法的执行效率,降低了迭代次数,前景物体边缘也得到较好的保护。展开更多
针对单一特征步态识别率低的问题,提出一种将步态能量图(Gait Energy Image,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步...针对单一特征步态识别率低的问题,提出一种将步态能量图(Gait Energy Image,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步态能量图,并从中分割出动态部分.然后,利用Gabor小波从步态能量图的动态部分中提取不同角度的信息,将两步态特征融合在一起,对融合后得到的特征向量用改进的KPCA方法进行降维.最后,将降维后的融合特征向量输入到基于多分类的支持向量机(Support Vector Machine,SVM)中,从而完成步态的分类和识别.经过在中国科学院自动化研究所CASIA步态数据库上进行实验,取得了很好的识别效果,实验结果表明,与单一特征的步态识别方法相比,融合后算法的识别率提高了约10%.展开更多
文摘针对单一特征步态识别率低的问题,提出一种将步态能量图(Gait Energy Image,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步态能量图,并从中分割出动态部分.然后,利用Gabor小波从步态能量图的动态部分中提取不同角度的信息,将两步态特征融合在一起,对融合后得到的特征向量用改进的KPCA方法进行降维.最后,将降维后的融合特征向量输入到基于多分类的支持向量机(Support Vector Machine,SVM)中,从而完成步态的分类和识别.经过在中国科学院自动化研究所CASIA步态数据库上进行实验,取得了很好的识别效果,实验结果表明,与单一特征的步态识别方法相比,融合后算法的识别率提高了约10%.