In this article, a method of high order, staggered grid, finite difference was used to model snapshots of seismic wave propagation and multi-azimuth surface seismic records in viscoelastic cracked monoclinic media. Th...In this article, a method of high order, staggered grid, finite difference was used to model snapshots of seismic wave propagation and multi-azimuth surface seismic records in viscoelastic cracked monoclinic media. The modeling results clearly show the anisotropy caused by the crack fill material and the viscoelastic wave field through the monoclinic media. Summarizing the regularity of seismic records for different azimuths, this study is a significant attempt to understand the wave fields propagated in real media and to propose a more rational theoretical model for the future.展开更多
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of ...A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.展开更多
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher...A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.展开更多
In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error m...In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.展开更多
Through the analysis and comparison of shortcomings and advantages of existing technologies on object modeling in 3D applications,we propose a new modeling method for virtual scene based on multi-view image sequence t...Through the analysis and comparison of shortcomings and advantages of existing technologies on object modeling in 3D applications,we propose a new modeling method for virtual scene based on multi-view image sequence to model irregular objects efficiently in 3D application.In 3D scene,this method can get better visual effect by tracking the viewer's real-time perspective position and projecting the photos from different perspectives dynamically.The philosophy of design,the steps of development and some other relevant topics are discussed in details,and the validity of the algorithm is analyzed.The results demonstrate that this method represents more superiority on simulating irregular objects by applying it to the modeling of virtual museum.展开更多
A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on ...A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on non-uniform rational B-spline (NURBS) technology provides the means to build a refined three-dimensional finite element model with more accurate meshing under complex terrain and geological conditions. Meanwhile, this method is a back-analysis of ground stress with combination of multivariable linear regression model and neural network (ANN) model. Firstly, the regression model is used to fit approximately boundary loads. Regarding the regressed loads as mean value, some sets of boundary loads with the same interval are constructed according to the principle of orthogonal design, to calculate the corresponding ground stress at the observation positions using finite element method. The results (boundary loads and the corresponding ground stress) are added to the samples for ANN training. And on this basis, an ANN model is established to implement higher precise back-analysis of initial ground stress. A practical application case shows that the relative error between the inversed ground stress and observed value is mostly less than 10 %, which can meet the need of engineering design and construction requirements.展开更多
In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (F...In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic response characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and con- tinuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors.展开更多
文摘In this article, a method of high order, staggered grid, finite difference was used to model snapshots of seismic wave propagation and multi-azimuth surface seismic records in viscoelastic cracked monoclinic media. The modeling results clearly show the anisotropy caused by the crack fill material and the viscoelastic wave field through the monoclinic media. Summarizing the regularity of seismic records for different azimuths, this study is a significant attempt to understand the wave fields propagated in real media and to propose a more rational theoretical model for the future.
基金Supported by the Project of Ministry of Education and Finance(No.200512)the Project of the State Key Laboratory of ocean engineering(GKZD010053-10)
文摘A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
基金Projects(61273163,61325015,61304121)supported by the National Natural Science Foundation of China
文摘A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.
基金Projects(2012ZX04010-011,2009ZX02037-02) supported by the Key National Science and Technology Project of China
文摘In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.
文摘Through the analysis and comparison of shortcomings and advantages of existing technologies on object modeling in 3D applications,we propose a new modeling method for virtual scene based on multi-view image sequence to model irregular objects efficiently in 3D application.In 3D scene,this method can get better visual effect by tracking the viewer's real-time perspective position and projecting the photos from different perspectives dynamically.The philosophy of design,the steps of development and some other relevant topics are discussed in details,and the validity of the algorithm is analyzed.The results demonstrate that this method represents more superiority on simulating irregular objects by applying it to the modeling of virtual museum.
基金Innovative Research Groups of the National Natural Science Foundation of China (No.51021004)National Science Foundation of China (No. 51079096)Program for New Century Excellent Talents in University (No. NCET-08-0391)
文摘A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on non-uniform rational B-spline (NURBS) technology provides the means to build a refined three-dimensional finite element model with more accurate meshing under complex terrain and geological conditions. Meanwhile, this method is a back-analysis of ground stress with combination of multivariable linear regression model and neural network (ANN) model. Firstly, the regression model is used to fit approximately boundary loads. Regarding the regressed loads as mean value, some sets of boundary loads with the same interval are constructed according to the principle of orthogonal design, to calculate the corresponding ground stress at the observation positions using finite element method. The results (boundary loads and the corresponding ground stress) are added to the samples for ANN training. And on this basis, an ANN model is established to implement higher precise back-analysis of initial ground stress. A practical application case shows that the relative error between the inversed ground stress and observed value is mostly less than 10 %, which can meet the need of engineering design and construction requirements.
基金supported by the National Natural Science Foundation of China (Grant No. 10476019)the Fundamental Research Funds for the Central Universities (Grant No. JY10000904018)
文摘In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic response characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and con- tinuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors.