An investigation made on the rotor blade tip vortex through use of a Three Dimensional Laser Doppler Velocimetry(3D LDV) is described. The experiment is conducted with a 2 m in diameter model helicopter rotor. By a ...An investigation made on the rotor blade tip vortex through use of a Three Dimensional Laser Doppler Velocimetry(3D LDV) is described. The experiment is conducted with a 2 m in diameter model helicopter rotor. By a series of measurements near blade tip, the velocity field near blade tip is documented, and through which, the tip vortex rollup and development are presented. The radial distribution of instantaneous velocities at various levels above and under the rotor disc is also measured in this investigation. Using this distribution, the influence of the tip vortex from the preceding blade on the follow up blade is discussed.展开更多
Experimental data of the continuous evolution of fluid flow characteristics in a dump combustor is very useful and essential for better and optimum designs of gas turbine combustors and ramjet engines. Unfortunately, ...Experimental data of the continuous evolution of fluid flow characteristics in a dump combustor is very useful and essential for better and optimum designs of gas turbine combustors and ramjet engines. Unfortunately, experimental techniques such as 2D and/or 3D LDV (Laser Doppler Velocimetry) measurements provide only limited discrete information at given points; especially, for the cases of complex flows such as dump combustor swirling flows. For this type of flows, usual numerical interpolating schemes appear to be unsuitable. Recently, neural networks have emerged as viable means of expanding a finite data set of experimental measurements to enhance better understanding of a particular complex phenomenon. This study showed that generalized feed forward network is suitable for the prediction of turbulent swirling flow characteristics in a model dump combustor. These techniques are proposed for optimum designs of dump combustors and ramjet engines.展开更多
In this paper, the chaotic dynamics in an attitude transition maneuver of a slosh-spacecraft coupled with flexible appendage in going from minor axis to major axis spin under the influence of dissipative effects due t...In this paper, the chaotic dynamics in an attitude transition maneuver of a slosh-spacecraft coupled with flexible appendage in going from minor axis to major axis spin under the influence of dissipative effects due to fuel slosh and a small flexible appendage constrained to only torsional vibration is investigated. The slosh-spacecraft coupled with flexible appendage in attitude maneuver carrying a sloshing liquid is considered as multi-body system with the sloshing motion modeled as a spherical pendulum. The focus in this paper is that the dynamics of the liquid and flexible appendage vibration are coupled. The equations of motion are derived and transformed into a form suitable for the application of Melnikov’s method. Melnikov’s integral is used to predict the transversal intersections of the stable and unstable manifolds for the perturbed system. An analytical criterion for chaotic motion is derived in terms of system parameters. This criterion is evaluated for its significance to the design of spacecraft. The dependence of the onset of chaos on quantities such as body shape and magnitude of damping values, fuel fraction and torsional vibration frequency of flexible appendage are investigated. In addition, we show that a spacecraft carrying a sloshing liquid, after passive reorientation maneuver, will end up with periodic limit motion other than a final major axis spin because of the intrinsic non-linearity of fuel slosh. Furthermore, an extensive numerical simulation is carried out to validate the Melnikov’s analytical result.展开更多
Recently, development of high technology has been required for the formation of thin uniform film in manufacturing processes of semiconductor as the semiconductor instruments become more sophisticated. Spin coating is...Recently, development of high technology has been required for the formation of thin uniform film in manufacturing processes of semiconductor as the semiconductor instruments become more sophisticated. Spin coating is usually used for spreading photoresist on a wafer surface. However, since rotating speed of the disk is very high in spin coating, the dropped photoresist scarers outward and reattaches on the film surface. A catch cup is set up outside the wafer in spin coating, and scattered photoresist mist is removed from the wafer edge by the exhaust flow generated at the gap between the wafer edge and the catch cup. In the dry process of a spin coating, it is a serious concern that the film thickness increases near the wafer edge in the case of low rotating speed. The purpose of this study is to make clear the effect of the catch cup geometry on the 3D boundary layer flow over the wafer surface and the drying rate of liquid film.展开更多
文摘An investigation made on the rotor blade tip vortex through use of a Three Dimensional Laser Doppler Velocimetry(3D LDV) is described. The experiment is conducted with a 2 m in diameter model helicopter rotor. By a series of measurements near blade tip, the velocity field near blade tip is documented, and through which, the tip vortex rollup and development are presented. The radial distribution of instantaneous velocities at various levels above and under the rotor disc is also measured in this investigation. Using this distribution, the influence of the tip vortex from the preceding blade on the follow up blade is discussed.
文摘Experimental data of the continuous evolution of fluid flow characteristics in a dump combustor is very useful and essential for better and optimum designs of gas turbine combustors and ramjet engines. Unfortunately, experimental techniques such as 2D and/or 3D LDV (Laser Doppler Velocimetry) measurements provide only limited discrete information at given points; especially, for the cases of complex flows such as dump combustor swirling flows. For this type of flows, usual numerical interpolating schemes appear to be unsuitable. Recently, neural networks have emerged as viable means of expanding a finite data set of experimental measurements to enhance better understanding of a particular complex phenomenon. This study showed that generalized feed forward network is suitable for the prediction of turbulent swirling flow characteristics in a model dump combustor. These techniques are proposed for optimum designs of dump combustors and ramjet engines.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772026, 11072030)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20080070011)+1 种基金the Scientific Research Foundation of Ministry of Education of China for Returned Scholars (Grant No. 20080732040)the Program of Beijing Municipal Key Discipline Construction
文摘In this paper, the chaotic dynamics in an attitude transition maneuver of a slosh-spacecraft coupled with flexible appendage in going from minor axis to major axis spin under the influence of dissipative effects due to fuel slosh and a small flexible appendage constrained to only torsional vibration is investigated. The slosh-spacecraft coupled with flexible appendage in attitude maneuver carrying a sloshing liquid is considered as multi-body system with the sloshing motion modeled as a spherical pendulum. The focus in this paper is that the dynamics of the liquid and flexible appendage vibration are coupled. The equations of motion are derived and transformed into a form suitable for the application of Melnikov’s method. Melnikov’s integral is used to predict the transversal intersections of the stable and unstable manifolds for the perturbed system. An analytical criterion for chaotic motion is derived in terms of system parameters. This criterion is evaluated for its significance to the design of spacecraft. The dependence of the onset of chaos on quantities such as body shape and magnitude of damping values, fuel fraction and torsional vibration frequency of flexible appendage are investigated. In addition, we show that a spacecraft carrying a sloshing liquid, after passive reorientation maneuver, will end up with periodic limit motion other than a final major axis spin because of the intrinsic non-linearity of fuel slosh. Furthermore, an extensive numerical simulation is carried out to validate the Melnikov’s analytical result.
基金the 21~(st)Century COE program of Pulse Power Science of Kumamoto University
文摘Recently, development of high technology has been required for the formation of thin uniform film in manufacturing processes of semiconductor as the semiconductor instruments become more sophisticated. Spin coating is usually used for spreading photoresist on a wafer surface. However, since rotating speed of the disk is very high in spin coating, the dropped photoresist scarers outward and reattaches on the film surface. A catch cup is set up outside the wafer in spin coating, and scattered photoresist mist is removed from the wafer edge by the exhaust flow generated at the gap between the wafer edge and the catch cup. In the dry process of a spin coating, it is a serious concern that the film thickness increases near the wafer edge in the case of low rotating speed. The purpose of this study is to make clear the effect of the catch cup geometry on the 3D boundary layer flow over the wafer surface and the drying rate of liquid film.