Production scheduling is one of the most important problems to be considered in the effective performance of the automatic manufacturing system.It is the typical kind of NP-complete problem. The methods commonly used ...Production scheduling is one of the most important problems to be considered in the effective performance of the automatic manufacturing system.It is the typical kind of NP-complete problem. The methods commonly used are not suitable to solve complicated problems because the calculating time rises exponentially with the increase of the problem size. In this paper, a new algorithm - immune based scheduling algorithm (IBSA) is proposed. After the description of the mathematics model and the calculating procedure of immune based scheduling,some examples are tested in the software system called HM IM& C that is developed usingVC+ +6.0. The testing results show that IBSA has high efficiency to solve scheduling problem.展开更多
The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj...The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness.展开更多
In this paper, an objective-based gradient multi-objective optimization (MOO) technique, the Objective-Based Gradient Algorithm (OBGA), is proposed with the goal of defining the Pareto domain more precisely and ef...In this paper, an objective-based gradient multi-objective optimization (MOO) technique, the Objective-Based Gradient Algorithm (OBGA), is proposed with the goal of defining the Pareto domain more precisely and efficiently than current MOO techniques. The performance of the OBGA in locating the Pareto domain was evaluated in terms of precision, computation time and number of objective function calls, and compared to two current MOO algorithms: Dual Population Evolutionary Algorithm (DPEA) and Non-Dominated Sorting Genetic Algorithm I1 (NSGA-II), using four test problems. For all test problems, the OBGA systematically produced a more precise Pareto domain than DPEA and NSGA-II. With the adequate selection of the OBGA parameters, computation time required for the OBGA can be lower than that required for DPEA and NSGA-II. Results clearly show that the OBGA is a very effective and efficient algorithm for locating the Pareto domain.展开更多
基金Shanghai Natural Science Foundation (01ZF14004) National Technology Innovation Project (02CJ-14 -05 -01)
文摘Production scheduling is one of the most important problems to be considered in the effective performance of the automatic manufacturing system.It is the typical kind of NP-complete problem. The methods commonly used are not suitable to solve complicated problems because the calculating time rises exponentially with the increase of the problem size. In this paper, a new algorithm - immune based scheduling algorithm (IBSA) is proposed. After the description of the mathematics model and the calculating procedure of immune based scheduling,some examples are tested in the software system called HM IM& C that is developed usingVC+ +6.0. The testing results show that IBSA has high efficiency to solve scheduling problem.
基金Projects(61105067,61174164)supported by the National Natural Science Foundation of China
文摘The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness.
文摘In this paper, an objective-based gradient multi-objective optimization (MOO) technique, the Objective-Based Gradient Algorithm (OBGA), is proposed with the goal of defining the Pareto domain more precisely and efficiently than current MOO techniques. The performance of the OBGA in locating the Pareto domain was evaluated in terms of precision, computation time and number of objective function calls, and compared to two current MOO algorithms: Dual Population Evolutionary Algorithm (DPEA) and Non-Dominated Sorting Genetic Algorithm I1 (NSGA-II), using four test problems. For all test problems, the OBGA systematically produced a more precise Pareto domain than DPEA and NSGA-II. With the adequate selection of the OBGA parameters, computation time required for the OBGA can be lower than that required for DPEA and NSGA-II. Results clearly show that the OBGA is a very effective and efficient algorithm for locating the Pareto domain.