A coupled neural system with multiple delays has been investigated. The number of equilibrium points is analyzed. It implies that the neural system exhibits a unique equilibrium and three ones for the different values...A coupled neural system with multiple delays has been investigated. The number of equilibrium points is analyzed. It implies that the neural system exhibits a unique equilibrium and three ones for the different values of coupling weight by employing the pitchfork bifurcation of the trivial equilibrium point. Further, the local asymptotical stability of the trivial equilibrium point is studied by analyzing the corresponding characteristic equation. Some stability criteria involving multiple delays and coupling weight are obtained. The results show that the neural system exhibits the delay-independent and delay-dependent stability. Increasing delay induces stability switching between resting state and periodic motion in some parameter regions of coupling weight. In addition, the criterion for the global stability of the trivial equilibrium is also derived by constructing a suitable Lyapunov functional. Finally, some numerical simulations are taken to support the theoretical results.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11202068&11572224)the University Key Teacher Foundation for Youths of Henan Province(Grant No.2014GGJS-076)the Key Technologies Research Project of Henan Province(Grant No.152102210089)
文摘A coupled neural system with multiple delays has been investigated. The number of equilibrium points is analyzed. It implies that the neural system exhibits a unique equilibrium and three ones for the different values of coupling weight by employing the pitchfork bifurcation of the trivial equilibrium point. Further, the local asymptotical stability of the trivial equilibrium point is studied by analyzing the corresponding characteristic equation. Some stability criteria involving multiple delays and coupling weight are obtained. The results show that the neural system exhibits the delay-independent and delay-dependent stability. Increasing delay induces stability switching between resting state and periodic motion in some parameter regions of coupling weight. In addition, the criterion for the global stability of the trivial equilibrium is also derived by constructing a suitable Lyapunov functional. Finally, some numerical simulations are taken to support the theoretical results.