The removal of B and P consumes most of heat energy in Si metallurgical purification process for solar-grade Si. Metal-liquating purification of metallurgical grade silicon (MG-Si), also called Si-recrystallization ...The removal of B and P consumes most of heat energy in Si metallurgical purification process for solar-grade Si. Metal-liquating purification of metallurgical grade silicon (MG-Si), also called Si-recrystallization from metal liquid, was a potential energy-saving method for the removal of B and P efficiently, since Si could be melted at lower temperature by alloying with metal. The selection criteria of metal-liquating system was elaborated, and Al, Sn and In were selected out as the optimum metallic mediums. For Sn-Si system, the segregation coefficient of B decreased to 0.038 at 1 500 K, which was much less than 0.8 at the melting point of Si. The mass fraction of B was diminished from 15×10^-6 to 0.1×10^-6 as MG-Si was purified by twice, while that of most metallic elements could be decreased to 0.1×10^-6 by purifying just once. During the metal-liquating process, the formation of compounds between impurity elements and Si was also an important route of impurity removal. Finally, one low-temperature metallurgical process based on metal-liquating method was proposed.展开更多
Interface is the key issue to understand the performance of composite materials.In this work,we study the interface between octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX) and graphite,try to find out its contri...Interface is the key issue to understand the performance of composite materials.In this work,we study the interface between octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX) and graphite,try to find out its contribution to mixture explosives.The work starts from the force-field derivation.We get ab initio based pair potentials across the interface,and then use them to study the interface structural and mechanical properties.A series of large scale molecular dynamics simulations are performed.The structure evolution,energy variation and elastic/plastic transformation of interface and polycrystal systems are calculated.The desensitizing mechanism of graphite to HMX is discussed.展开更多
A new silicate fluoride,NaBa3 Si207 F,has been successfully synthesized by a high-temperature solution method.It crystallizes in the orthorhombic space group Cmcm(No.63).NaBa3 Si2 O7 F is the first barium-containing a...A new silicate fluoride,NaBa3 Si207 F,has been successfully synthesized by a high-temperature solution method.It crystallizes in the orthorhombic space group Cmcm(No.63).NaBa3 Si2 O7 F is the first barium-containing alkali metal silicate fluoride with the[NaO6]polyhedra,the[BaO8 F]polyhedra and isolated[Si2 O7]units.The optical characterizations indicate that NaBa3 Si2 O7 F possesses wide transparent window and available luminescence properties.To confirm the coordination surroundings of anionic groups and its thermostability,infrared spectroscopy and thermal behaviors were also analyzed,which proved the existence of tetrahedronly coordinated silicium atoms and the good stability of NaBa3 Si2 O7 F at high temperature.First-principles calculation was also implemented for better understanding the relationship between the structure of NaBa3 Si207 F and its property.Additionally,to further explore the structural novelty of NaBa3 Si2 O7 F,the comparison of the anionic structures was carried out in mixed alkali and alkaline-earth metal silicate fluorides.Interestingly,the result indicates the isolated[Si2 O7]dimer is rare among the above systems,which enriches the structural chemistry of silicate fluorides.展开更多
基金Project (2009BAB49B04) supported by National Key Technologies R&D Program, China
文摘The removal of B and P consumes most of heat energy in Si metallurgical purification process for solar-grade Si. Metal-liquating purification of metallurgical grade silicon (MG-Si), also called Si-recrystallization from metal liquid, was a potential energy-saving method for the removal of B and P efficiently, since Si could be melted at lower temperature by alloying with metal. The selection criteria of metal-liquating system was elaborated, and Al, Sn and In were selected out as the optimum metallic mediums. For Sn-Si system, the segregation coefficient of B decreased to 0.038 at 1 500 K, which was much less than 0.8 at the melting point of Si. The mass fraction of B was diminished from 15×10^-6 to 0.1×10^-6 as MG-Si was purified by twice, while that of most metallic elements could be decreased to 0.1×10^-6 by purifying just once. During the metal-liquating process, the formation of compounds between impurity elements and Si was also an important route of impurity removal. Finally, one low-temperature metallurgical process based on metal-liquating method was proposed.
基金Supported by the 973 Project in China under Grant No. 61383National Natural Science Foundation of China under Grant No. 11004011+1 种基金Defence Industrial Technology Development Program under Grant No. B1520110002Open Project of State Key Labo-ratory of Explosion Science and Technology (Beijing Institute of Technology,No. KFJJ11-2M)
文摘Interface is the key issue to understand the performance of composite materials.In this work,we study the interface between octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX) and graphite,try to find out its contribution to mixture explosives.The work starts from the force-field derivation.We get ab initio based pair potentials across the interface,and then use them to study the interface structural and mechanical properties.A series of large scale molecular dynamics simulations are performed.The structure evolution,energy variation and elastic/plastic transformation of interface and polycrystal systems are calculated.The desensitizing mechanism of graphite to HMX is discussed.
基金supported by the National Natural Science Foundation of China(U1703132,51872325 and 61835014)Tianshan Innovation Team Program(2018D14001)+5 种基金Xinjiang International Science&Technology Cooperation Program(2017E01014)the National Key Research Project(2016YFB0402104)the Science and Technology Project of Urumqi(P161010002)Xinjiang Key Research and Development Program(2016B02021)Major Program of Xinjiang Uygur Autonomous Region of China during the 13th Five-Year Plan Period(2016A02003)West Light Foundation of the Chinese Academy of Sciences(2016-YJRC-2)
文摘A new silicate fluoride,NaBa3 Si207 F,has been successfully synthesized by a high-temperature solution method.It crystallizes in the orthorhombic space group Cmcm(No.63).NaBa3 Si2 O7 F is the first barium-containing alkali metal silicate fluoride with the[NaO6]polyhedra,the[BaO8 F]polyhedra and isolated[Si2 O7]units.The optical characterizations indicate that NaBa3 Si2 O7 F possesses wide transparent window and available luminescence properties.To confirm the coordination surroundings of anionic groups and its thermostability,infrared spectroscopy and thermal behaviors were also analyzed,which proved the existence of tetrahedronly coordinated silicium atoms and the good stability of NaBa3 Si2 O7 F at high temperature.First-principles calculation was also implemented for better understanding the relationship between the structure of NaBa3 Si207 F and its property.Additionally,to further explore the structural novelty of NaBa3 Si2 O7 F,the comparison of the anionic structures was carried out in mixed alkali and alkaline-earth metal silicate fluorides.Interestingly,the result indicates the isolated[Si2 O7]dimer is rare among the above systems,which enriches the structural chemistry of silicate fluorides.