TiO 2 nanoparticles were obtained from industrial TiOSO 4 by hydrolysis method. SnO 2/TiO 2 and SnO 2-TiO 2 composite powders were prepared by stepwise precipitation method and coating method, respectively. The phase ...TiO 2 nanoparticles were obtained from industrial TiOSO 4 by hydrolysis method. SnO 2/TiO 2 and SnO 2-TiO 2 composite powders were prepared by stepwise precipitation method and coating method, respectively. The phase transformation of TiO 2 and the effect of composite mode of SnO 2 on phase transformation of TiO 2 have been investigated by TG-DTA and XRD. The phase transform of pure TiO 2 from anatase to rutile begins at 750 ℃ and the presence of SnO 2 markedly reduces the transform temperature: for coated SnO 2-TiO 2 composite with ω(SnO 2)=20% it was 400 ℃. The SnO 2/TiO 2 composite prepared by precipitation method and followed by calcination at 400 ℃ for 30 min possesses 55% rutile TiO 2. The formation of SnO 2-TiO 2 solid- solution occurrs mainly due to the substitution of Ti 4+ crystal lattice sites by Sn 4+ ions of SnO 2.展开更多
基金the National Natural Science Foundation of China (50772064)Xianyang Scientific and Technological Project (K05010-6)+1 种基金Wenzhou Scientific and Technological Project(H20070016)Shaanxi Scientific and Technological Project(2005K06-G4)
文摘TiO 2 nanoparticles were obtained from industrial TiOSO 4 by hydrolysis method. SnO 2/TiO 2 and SnO 2-TiO 2 composite powders were prepared by stepwise precipitation method and coating method, respectively. The phase transformation of TiO 2 and the effect of composite mode of SnO 2 on phase transformation of TiO 2 have been investigated by TG-DTA and XRD. The phase transform of pure TiO 2 from anatase to rutile begins at 750 ℃ and the presence of SnO 2 markedly reduces the transform temperature: for coated SnO 2-TiO 2 composite with ω(SnO 2)=20% it was 400 ℃. The SnO 2/TiO 2 composite prepared by precipitation method and followed by calcination at 400 ℃ for 30 min possesses 55% rutile TiO 2. The formation of SnO 2-TiO 2 solid- solution occurrs mainly due to the substitution of Ti 4+ crystal lattice sites by Sn 4+ ions of SnO 2.