The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidificati...The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidification.Taking high pure succinonitrile (SCN) undercooled melt as an example,the forced laminar flow effect on multiple grains was studied by phase-field model of single grain which coupled with flow equations at non-isothermal condition.The simulation results show that the random grid method can reasonably settle the problem of random distribution and is more effective.When the solid fraction is relatively low,melt particles flow around the downstream side of dendrite,and the flow velocity between two dendrite arms becomes high.At the stage of solidification time less than 1800Δt,every dendrite grows freely;the upstream dendrites are stronger than the downstream ones.The higher the melt flow rate,the higher the solid fraction.However,when the solid fraction is relatively high,the dendrite arm intertwins and only a little residual melt which is not encapsulated can flow;the solid fraction will gradually tend to equal to solid fraction of melt without flow.展开更多
The growth interfaces of CdMnTe(CMT) crystals grown by traveling heater method(THM) were studied. Two types of polycrystalline CMT feed ingots synthesized in a traditional rocking furnace and vertical Bridgman(VB...The growth interfaces of CdMnTe(CMT) crystals grown by traveling heater method(THM) were studied. Two types of polycrystalline CMT feed ingots synthesized in a traditional rocking furnace and vertical Bridgman(VB) furnace were adopted in THM growth, and the effects of the polycrystalline feed on the growth interface were revealed. The morphology of the growth interface of CMT crystal(CMT2) grown from the feed by vertical Bridgman was smoother with lower curvature compared with that of CMT crystal(CMT1) from the feed by rocking furnace. The radial Mn composition and Te inclusion distribution of the CMT wafers were analyzed and correlated to the growth interface. The Mn segregation along the radial direction and Te inclusion density of CMT2 were lower than those of CMT1. The VB method synthesized polycrystalline feed could improve the growth interface morphology, which is beneficial for decreasing the Te inclusions and Mn segregation in CMT wafers.展开更多
InGaN/GaN MQWs structures were grown by MOCVD. The effects of the growth interruption time on the optical and structural properties of InGaN/GaN MQWs were investigated. The experimental results show that the growth in...InGaN/GaN MQWs structures were grown by MOCVD. The effects of the growth interruption time on the optical and structural properties of InGaN/GaN MQWs were investigated. The experimental results show that the growth interruption can improve the interface quality, increase the intensity of photoluminescence (PL) and electroluminescence (EL); but if the interruption time was too long, the well thickness and the average In composition of MQWs decreased, and the EL intensity also decreased due to poor interface quality and impurities derived from growth interruption.展开更多
In this work,hybrid material CNTs@MIL-101(Cr) was synthesized in 2 h using multi-walled carbon nanotubes(MWCNTs) as the crystal growth accelerator with hydrothermal method.The characteristic differences between the cr...In this work,hybrid material CNTs@MIL-101(Cr) was synthesized in 2 h using multi-walled carbon nanotubes(MWCNTs) as the crystal growth accelerator with hydrothermal method.The characteristic differences between the crystals of CNTs@MIL-101(Cr) and MIL-101 were investigated by N_2 adsorption–desorption isotherms,X-ray diffraction(XRD),scanning electron microscope(SEM) and thermogravimetric analyzer(TGA).The results showed that MWCNTs embedding in the hybrid material provide more mesoporous volumes than that of MIL-101.Moreover,the fast synthesized crystals of CNTs@MIL-101(Cr) still preserve the octahedral shape like MIL-101 and have a larger size ranging from 1.5 to 2.0 μm which were approximately three times larger than that of MIL-101.In the proposed mechanism,the roles of MWCNTs played in the crystallization were discussed where MWCNTs can be seen as coaxial cylindrical tubes composed of multi-layer graphenes and the place where nucleation and crystal growth processes occur at the tubes' out surface.Then,a crystal seeding layer bonding with the MWCNTs may be easily formed which accelerates the growth rate of MIL-101 crystals.Thus,larger crystals of CNTs@MIL-101(Cr) were formed due to the faster crystal growth rate of MIL-101.展开更多
MBE growth of ZnS_xSe_1-x thin films on ITO coated glass substrate s were carried o ut using ZnS and Se sources with the substrate temperature ranging from 270℃ to 330℃. The XRD θ/2θ spectra resulted from these...MBE growth of ZnS_xSe_1-x thin films on ITO coated glass substrate s were carried o ut using ZnS and Se sources with the substrate temperature ranging from 270℃ to 330℃. The XRD θ/2θ spectra resulted from these films indicated that the as-gro wn polycrystalline ZnS_xSe_1-x thin films had a preferred orientat ion along the (1 11) planes. The evaluated crystal sizes as deduced from the FWHM of the XRD laye r peaks showed strong growth temperature dependence, with the optimized temperat ure being about 290℃. Both AFM and TEM measurements of these thin films also in dicated a similar growth temperature dependence. High quality ZnS_xSe_1- x thin fil m grown at the optimized temperature had the smoothest surface with lowest RMS v alue of 1.2 nm and TEM cross-sectional micrograph showing a well defined column ar structure.展开更多
Perovskite crystal film quality is critical for obtaining efficient perovskite solar cells. Anti-solvent processing was used for fast crystallization of perovskite precursor film, which can form dense perovskite film....Perovskite crystal film quality is critical for obtaining efficient perovskite solar cells. Anti-solvent processing was used for fast crystallization of perovskite precursor film, which can form dense perovskite film. However, the crystals from this method are usually small due to the fast crystal growth process, which could lead to grain boundary recombination. Here, element chloride is introduced to enhance the perovskite layer crystallinity via slowing down the perovskite crystallization process by simultaneous introduction of methylammounium chloride (MACI) and cesium chloride (CsCl) into precursor solution. As a result, we achieve high quality of pin-hole free perovskite film with large crystal size. A power conversion efficiency of 21.55% with free of hysteresis of the device is obtained, which is among the highest efficiency of planar structure perovskite solar cells.展开更多
A series of SrTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution from cubic to edge-truncated cubic and truncated rhombic dodecahedra have been synthesized by using a series of alcohol molecule...A series of SrTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution from cubic to edge-truncated cubic and truncated rhombic dodecahedra have been synthesized by using a series of alcohol molecules with different acidities as surfactants. The concentration and pKa value of the alcohols both play important roles in determining the size and shape of the SrTiO3 polyhedral submicro]nanocrystals. The adsorption energy of alcohol molecules on SrTiO3 [110] facets depends on their pKa values, which are therefore critical for morphology control. Using the same strategy, a series of BaTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution have also been successfully prepared.展开更多
基金Project(10964004) supported by the National Natural Science Foundation of ChinaProject(20070731001) supported by Research Fund for the Doctoral Program of China+1 种基金 Project(096RJZA104) supported by the Natural Science Foundation of Gansu Province,ChinaProject(SB14200801) supported by the Doctoral Fund of Lanzhou University of Technology,China
文摘The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidification.Taking high pure succinonitrile (SCN) undercooled melt as an example,the forced laminar flow effect on multiple grains was studied by phase-field model of single grain which coupled with flow equations at non-isothermal condition.The simulation results show that the random grid method can reasonably settle the problem of random distribution and is more effective.When the solid fraction is relatively low,melt particles flow around the downstream side of dendrite,and the flow velocity between two dendrite arms becomes high.At the stage of solidification time less than 1800Δt,every dendrite grows freely;the upstream dendrites are stronger than the downstream ones.The higher the melt flow rate,the higher the solid fraction.However,when the solid fraction is relatively high,the dendrite arm intertwins and only a little residual melt which is not encapsulated can flow;the solid fraction will gradually tend to equal to solid fraction of melt without flow.
基金Projects(11375112,51472155,11275122)supported by the National Natural Science Foundation of China
文摘The growth interfaces of CdMnTe(CMT) crystals grown by traveling heater method(THM) were studied. Two types of polycrystalline CMT feed ingots synthesized in a traditional rocking furnace and vertical Bridgman(VB) furnace were adopted in THM growth, and the effects of the polycrystalline feed on the growth interface were revealed. The morphology of the growth interface of CMT crystal(CMT2) grown from the feed by vertical Bridgman was smoother with lower curvature compared with that of CMT crystal(CMT1) from the feed by rocking furnace. The radial Mn composition and Te inclusion distribution of the CMT wafers were analyzed and correlated to the growth interface. The Mn segregation along the radial direction and Te inclusion density of CMT2 were lower than those of CMT1. The VB method synthesized polycrystalline feed could improve the growth interface morphology, which is beneficial for decreasing the Te inclusions and Mn segregation in CMT wafers.
基金National Natural Science Foundation ofChina (grant No. 60506012) and Beijing Education committeeFound( No. KZ200510005003)
文摘InGaN/GaN MQWs structures were grown by MOCVD. The effects of the growth interruption time on the optical and structural properties of InGaN/GaN MQWs were investigated. The experimental results show that the growth interruption can improve the interface quality, increase the intensity of photoluminescence (PL) and electroluminescence (EL); but if the interruption time was too long, the well thickness and the average In composition of MQWs decreased, and the EL intensity also decreased due to poor interface quality and impurities derived from growth interruption.
基金Supported by the National Natural Science Foundation of China(21006053)
文摘In this work,hybrid material CNTs@MIL-101(Cr) was synthesized in 2 h using multi-walled carbon nanotubes(MWCNTs) as the crystal growth accelerator with hydrothermal method.The characteristic differences between the crystals of CNTs@MIL-101(Cr) and MIL-101 were investigated by N_2 adsorption–desorption isotherms,X-ray diffraction(XRD),scanning electron microscope(SEM) and thermogravimetric analyzer(TGA).The results showed that MWCNTs embedding in the hybrid material provide more mesoporous volumes than that of MIL-101.Moreover,the fast synthesized crystals of CNTs@MIL-101(Cr) still preserve the octahedral shape like MIL-101 and have a larger size ranging from 1.5 to 2.0 μm which were approximately three times larger than that of MIL-101.In the proposed mechanism,the roles of MWCNTs played in the crystallization were discussed where MWCNTs can be seen as coaxial cylindrical tubes composed of multi-layer graphenes and the place where nucleation and crystal growth processes occur at the tubes' out surface.Then,a crystal seeding layer bonding with the MWCNTs may be easily formed which accelerates the growth rate of MIL-101 crystals.Thus,larger crystals of CNTs@MIL-101(Cr) were formed due to the faster crystal growth rate of MIL-101.
文摘MBE growth of ZnS_xSe_1-x thin films on ITO coated glass substrate s were carried o ut using ZnS and Se sources with the substrate temperature ranging from 270℃ to 330℃. The XRD θ/2θ spectra resulted from these films indicated that the as-gro wn polycrystalline ZnS_xSe_1-x thin films had a preferred orientat ion along the (1 11) planes. The evaluated crystal sizes as deduced from the FWHM of the XRD laye r peaks showed strong growth temperature dependence, with the optimized temperat ure being about 290℃. Both AFM and TEM measurements of these thin films also in dicated a similar growth temperature dependence. High quality ZnS_xSe_1- x thin fil m grown at the optimized temperature had the smoothest surface with lowest RMS v alue of 1.2 nm and TEM cross-sectional micrograph showing a well defined column ar structure.
基金supported by National 1000 Young Talents AwardsNational Key Research and Development Program of China(2016YFB0700700)+1 种基金National Natural Science Foundation of China(61634001,61574133)supported by Hanergy Group
文摘Perovskite crystal film quality is critical for obtaining efficient perovskite solar cells. Anti-solvent processing was used for fast crystallization of perovskite precursor film, which can form dense perovskite film. However, the crystals from this method are usually small due to the fast crystal growth process, which could lead to grain boundary recombination. Here, element chloride is introduced to enhance the perovskite layer crystallinity via slowing down the perovskite crystallization process by simultaneous introduction of methylammounium chloride (MACI) and cesium chloride (CsCl) into precursor solution. As a result, we achieve high quality of pin-hole free perovskite film with large crystal size. A power conversion efficiency of 21.55% with free of hysteresis of the device is obtained, which is among the highest efficiency of planar structure perovskite solar cells.
文摘A series of SrTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution from cubic to edge-truncated cubic and truncated rhombic dodecahedra have been synthesized by using a series of alcohol molecules with different acidities as surfactants. The concentration and pKa value of the alcohols both play important roles in determining the size and shape of the SrTiO3 polyhedral submicro]nanocrystals. The adsorption energy of alcohol molecules on SrTiO3 [110] facets depends on their pKa values, which are therefore critical for morphology control. Using the same strategy, a series of BaTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution have also been successfully prepared.