To study the ferroelectric photovoltaic effect based on polycrystalline films, preparation of high-quality polycrystalline films with low leakage and high remnant polarization is essential. Polycrystalline BiFeO3 (BF...To study the ferroelectric photovoltaic effect based on polycrystalline films, preparation of high-quality polycrystalline films with low leakage and high remnant polarization is essential. Polycrystalline BiFeO3 (BFO) thin films with extremely large remnant polarization (2Pr = 180 ~aC/cm2) were successfully deposited on glass substrates coated with indium tin oxide using a modified radio frequency magnetron sputtering method. Symmetric and asymmetric cells were constructed to investigate the ferroelectric photovoltaic effect in order to understand the relationship between polarization and photovoltaic response. All examined cells showed polarization-induced photovoltaic effect. Our findings also showed that the ferroelectric photovoltaic effect is highly dependent on the material used for the top electrode and the thickness of the polycrystalline film.展开更多
Single crystals of organic semiconductors with perfect crystal structure and minimal density of defects can exhibit high mobility and low spin scattering compared with their amorphous or polycrystalline counterparts.T...Single crystals of organic semiconductors with perfect crystal structure and minimal density of defects can exhibit high mobility and low spin scattering compared with their amorphous or polycrystalline counterparts.Therefore,these materials are promising candidates as the spin transport media to obtain long spin relaxation times and spin diffusion lengths in spintronic devices.However,the investigation of spin injection and transport properties in organic single crystals is hindered by the inability to construct devices such as single-crystalline organic spin valves(OSVs).Herein,thin and large organic single crystals of 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-pentacene)were grown on a liquid substrate and transferred to a target substrate carrying ferromagnetic electrodes to construct single-crystalline OSVs.The magnetoresistance(MR)responses of the single crystals were investigated to study their spin injection and transport properties.MR value as high as 17%was probed with an intermediate layer thickness of 269 nm.More importantly,spin transport was still observed in a single crystal of a thickness up to 457 nm,which was much larger than that of polycrystalline thin film.Our research provides a general methodology for constructing single-crystalline OSVs and paves the way to probe the intrinsic spin transport properties of organic semiconductors based on single crystals.展开更多
基金supported by the National High Technology Research and Development Program(Grant No.2011AA050511)Jiangsu"333"Project,the Priority Academic Program Development of Jiangsu Higher Education Institutions and Research and Innovation Project for College Graduates of Jiangsu Province(Grant No.CXLX13_722)
文摘To study the ferroelectric photovoltaic effect based on polycrystalline films, preparation of high-quality polycrystalline films with low leakage and high remnant polarization is essential. Polycrystalline BiFeO3 (BFO) thin films with extremely large remnant polarization (2Pr = 180 ~aC/cm2) were successfully deposited on glass substrates coated with indium tin oxide using a modified radio frequency magnetron sputtering method. Symmetric and asymmetric cells were constructed to investigate the ferroelectric photovoltaic effect in order to understand the relationship between polarization and photovoltaic response. All examined cells showed polarization-induced photovoltaic effect. Our findings also showed that the ferroelectric photovoltaic effect is highly dependent on the material used for the top electrode and the thickness of the polycrystalline film.
基金the National Natural Science Foundation of China(61674116,51873148,51633006,and 52003190)the Ministry of Science and Technology of China(2016YFA0202302)the Natural Science Foundation of Tianjin(18JC-YBJC18400)。
文摘Single crystals of organic semiconductors with perfect crystal structure and minimal density of defects can exhibit high mobility and low spin scattering compared with their amorphous or polycrystalline counterparts.Therefore,these materials are promising candidates as the spin transport media to obtain long spin relaxation times and spin diffusion lengths in spintronic devices.However,the investigation of spin injection and transport properties in organic single crystals is hindered by the inability to construct devices such as single-crystalline organic spin valves(OSVs).Herein,thin and large organic single crystals of 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-pentacene)were grown on a liquid substrate and transferred to a target substrate carrying ferromagnetic electrodes to construct single-crystalline OSVs.The magnetoresistance(MR)responses of the single crystals were investigated to study their spin injection and transport properties.MR value as high as 17%was probed with an intermediate layer thickness of 269 nm.More importantly,spin transport was still observed in a single crystal of a thickness up to 457 nm,which was much larger than that of polycrystalline thin film.Our research provides a general methodology for constructing single-crystalline OSVs and paves the way to probe the intrinsic spin transport properties of organic semiconductors based on single crystals.