This paper examines an M[x]/G/1 queueing system with an unreliable server and a delayed repair, in which the server operates a randomized vacation policy with multiple vacations. Whenever the system is empty, the serv...This paper examines an M[x]/G/1 queueing system with an unreliable server and a delayed repair, in which the server operates a randomized vacation policy with multiple vacations. Whenever the system is empty, the server immediately takes a,vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 -p. Whenever one or more customers arrive when the server is idle, the server immediately starts providing service for the arrivals. The server may also meet an unpredictable breakdown and the repair may be delayed. For such a system the authors derive the distributions of some important system characteristics, such as the system size distribution at a random epoch and at a departure epoch, the system size distribution at the busy period initiation epoch, and the distribution of the idle period and the busy period. The authors perform a numerical analysis for changes in the system characteristics, along with changes in specific values of the system parameters. A cost effectiveness maximization model is constructed to explain the benefits of such a queueing system.展开更多
This paper considers an infinite buffer renewal input queue with multiple working vacation policy wherein customers are served by a single server according to general bulk service (a,b)-rule (1 ≤ a ≤ b). If the ...This paper considers an infinite buffer renewal input queue with multiple working vacation policy wherein customers are served by a single server according to general bulk service (a,b)-rule (1 ≤ a ≤ b). If the number of waiting customers in the system at a service completion epoch (during a normal busy period) is lower than 'a', then the server starts a vacation. During a vacation if the number of waiting customers reaches the minimum threshold size 'a', then the server starts serving this batch with a lower rate than that of the normal busy period. After completion of a batch service during working vacation, if the server finds less than takes another vacation, otherwise the server rate. The maximum allowed size of a batch a' customers accumulated in the system, then the server continues to serve the available batch with that lower in service is 'b'. The authors derive both queue-length and system-length distributions at pre-arrival epoch using both embedded Markov chain approach and the roots method. The arbitrary epoch probabilities are obtained using the classical argument based on renewal theory. Several performance measures like average queue and system-length, mean waiting-time, cost and profit optimization are studied and numerically computed.展开更多
文摘This paper examines an M[x]/G/1 queueing system with an unreliable server and a delayed repair, in which the server operates a randomized vacation policy with multiple vacations. Whenever the system is empty, the server immediately takes a,vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 -p. Whenever one or more customers arrive when the server is idle, the server immediately starts providing service for the arrivals. The server may also meet an unpredictable breakdown and the repair may be delayed. For such a system the authors derive the distributions of some important system characteristics, such as the system size distribution at a random epoch and at a departure epoch, the system size distribution at the busy period initiation epoch, and the distribution of the idle period and the busy period. The authors perform a numerical analysis for changes in the system characteristics, along with changes in specific values of the system parameters. A cost effectiveness maximization model is constructed to explain the benefits of such a queueing system.
文摘This paper considers an infinite buffer renewal input queue with multiple working vacation policy wherein customers are served by a single server according to general bulk service (a,b)-rule (1 ≤ a ≤ b). If the number of waiting customers in the system at a service completion epoch (during a normal busy period) is lower than 'a', then the server starts a vacation. During a vacation if the number of waiting customers reaches the minimum threshold size 'a', then the server starts serving this batch with a lower rate than that of the normal busy period. After completion of a batch service during working vacation, if the server finds less than takes another vacation, otherwise the server rate. The maximum allowed size of a batch a' customers accumulated in the system, then the server continues to serve the available batch with that lower in service is 'b'. The authors derive both queue-length and system-length distributions at pre-arrival epoch using both embedded Markov chain approach and the roots method. The arbitrary epoch probabilities are obtained using the classical argument based on renewal theory. Several performance measures like average queue and system-length, mean waiting-time, cost and profit optimization are studied and numerically computed.