The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A sel...The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm~2,along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm2 at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm2 for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.展开更多
This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃sp...This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.展开更多
Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use ...Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use of organic templates and the subsequent calcination procedure.This not only reduces the cost of synthesis,but also prevents environmental pollution from the combustion of organic templates,representing an eco-friendly approach.Despite this,literature suggests that even so-called template-free synthesis systems often involve trace amount of organic substances like alcohol.In the present work,a calcined commercial ZSM-5 zeolite was served as seed,with sodium aluminate as aluminum source and silica sol as silicon source,ensuring an entirely template-free synthesis system.Polycrystalline ZSM-5 aggregates consisted of rod-like nanocrystals were successfully prepared in the completely OSDA-free system.Effects of the Si/Al ratio in ZSM-5 seed,dosage and crystallization conditions such as crystallization temperature and crystallization time on ZSM-5 synthesis were investigated.The results show that a highly crystallinity ZSM-5 aggregate consisting of primary nano-sized crystals less than 100 nm is produced from a gel precursor with 5.6%(in mass)seed after hydrothermal treatment for 48 h.Furthermore,the Si/Al ratio in ZSM-5 seed has little effect on the topological structure and pore structure of the synthesized samples.However,the seeds with a low Si/Al ratio facilitate faster crystallization of zeolite and enhance the acidity,especially the strong acid centers,of the catalyst.The catalytic performance of the synthesized polycrystalline ZSM-5 was evaluated during dehydration of methanol and compared with a commercial reference ZSM-5r.The results exhibit that as compared with the reference catalyst,the fabricated sample has a longer catalytic lifetime(16 h vs 8 h)attributed to its hierarchical pores derived from the loosely packed primary nanoparticles.Additionally,the prepared polycrystalline catalyst also exhibits a higher aromatics selectivity(28.1%-29.8%vs 26.5%).展开更多
In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential ...In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential between 0 eV and 0.5 eV,the GFSS can achieve four working states:dual-band passband,high-pass lowimpedance,low-pass high-impedance,and band-stop.Based on this GFSS,a hexagonal radome on a broadband omnidirectional monopole antenna is proposed,which can achieve independent 360°six-beam omnidirectional scanning at 1.08 THz and 1.58 THz dual bands.In addition,while increasing the directionality,the peak gains of the dual bands reach 7.44 dBi and 6.67 dBi,respectively.This work provides a simple method for realizing multi-band terahertz multi-beam reconfigurable antennas.展开更多
基金financially supported from the National Natural Science Foundation of China(No.52201254)the Natural Science Foundation of Shandong Province,China(Nos.ZR2023ME155,ZR2020MB090,ZR2020QE012,ZR2020MB027)+1 种基金the Project of“20 Items of University”of Jinan,China(No.202228046)the Taishan Scholar Project of Shandong Province,China(No.tsqn202306226)。
文摘The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm~2,along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm2 at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm2 for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.
文摘This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.
基金National Natural Science Foundation of China(U19B2003,21706177,21975174)Foundation Supported by China Petroleum&Chemical Corporation(121014-2)。
文摘Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use of organic templates and the subsequent calcination procedure.This not only reduces the cost of synthesis,but also prevents environmental pollution from the combustion of organic templates,representing an eco-friendly approach.Despite this,literature suggests that even so-called template-free synthesis systems often involve trace amount of organic substances like alcohol.In the present work,a calcined commercial ZSM-5 zeolite was served as seed,with sodium aluminate as aluminum source and silica sol as silicon source,ensuring an entirely template-free synthesis system.Polycrystalline ZSM-5 aggregates consisted of rod-like nanocrystals were successfully prepared in the completely OSDA-free system.Effects of the Si/Al ratio in ZSM-5 seed,dosage and crystallization conditions such as crystallization temperature and crystallization time on ZSM-5 synthesis were investigated.The results show that a highly crystallinity ZSM-5 aggregate consisting of primary nano-sized crystals less than 100 nm is produced from a gel precursor with 5.6%(in mass)seed after hydrothermal treatment for 48 h.Furthermore,the Si/Al ratio in ZSM-5 seed has little effect on the topological structure and pore structure of the synthesized samples.However,the seeds with a low Si/Al ratio facilitate faster crystallization of zeolite and enhance the acidity,especially the strong acid centers,of the catalyst.The catalytic performance of the synthesized polycrystalline ZSM-5 was evaluated during dehydration of methanol and compared with a commercial reference ZSM-5r.The results exhibit that as compared with the reference catalyst,the fabricated sample has a longer catalytic lifetime(16 h vs 8 h)attributed to its hierarchical pores derived from the loosely packed primary nanoparticles.Additionally,the prepared polycrystalline catalyst also exhibits a higher aromatics selectivity(28.1%-29.8%vs 26.5%).
基金Supported by the Natural Science Foundation of Tibet Autonomous Region(XZ202401ZR0025)the National Natural Science Founda-tion of China(62164011,62301081)the Natural Science Foundation of Shaanxi Province(2022JQ-589)。
文摘In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential between 0 eV and 0.5 eV,the GFSS can achieve four working states:dual-band passband,high-pass lowimpedance,low-pass high-impedance,and band-stop.Based on this GFSS,a hexagonal radome on a broadband omnidirectional monopole antenna is proposed,which can achieve independent 360°six-beam omnidirectional scanning at 1.08 THz and 1.58 THz dual bands.In addition,while increasing the directionality,the peak gains of the dual bands reach 7.44 dBi and 6.67 dBi,respectively.This work provides a simple method for realizing multi-band terahertz multi-beam reconfigurable antennas.